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Solving the 2+1D acoustic wave equation:

∇!𝑢 𝑥, 𝑡 −
1

𝑐 𝑥 !
𝜕!𝑢 𝑥, 𝑡
𝜕𝑡! = 0



Publications
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Multilevel domain decomposition-based 
architectures for physics-informed neural 
networks

Dolean, V., Heinlein, A., Mishra, S., Moseley, B. 
(2023) (under review).

https://arxiv.org/abs/2306.05486

Finite basis physics-informed neural 
networks (FBPINNs): a scalable domain 
decomposition approach for solving 
differential equations

Moseley, B., Markham, A., Nissen-Meyer, T., ACM 
(2023).

https://arxiv.org/abs/2107.07871

Code: github.com/benmoseley/FBPINNs
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What is a physics-informed neural network (PINN)?
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Raissi et al, Physics-informed neural networks: A deep learning framework for solving forward and inverse 
problems involving nonlinear partial differential equations, JCP (2018)
Lagaris et al, Artificial neural networks for solving ordinary and partial differential equations, IEEE (1998)
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Problem: damped harmonic 
oscillator
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Raissi et al, Physics-informed neural networks: A deep learning framework for solving forward and inverse 
problems involving nonlinear partial differential equations, JCP (2018)
Lagaris et al, Artificial neural networks for solving ordinary and partial differential equations, IEEE (1998)
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What is a physics-informed neural network (PINN)?
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Advantages of PINNs

• Mesh-free
• Can jointly solve forward and inverse 

problems
• Often performs well on “messy” 

problems (where some observational 
data is available)

• Mostly unsupervised
• Can perform well for high-dimensional 

PDEs

Limitations of PINNs

• Computational cost often high 
(especially for forward-only 
problems)

• Can be hard to optimise
• Challenging to scale to high-

frequency, multi-scale problems
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Scaling PINNs to high frequency / multiscale problems
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Problem: PINNs struggle to solve high-
frequency / multiscale problems

Damped harmonic 
oscillator



Spectral bias issue
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NNs prioritise learning lower frequency functions first

Under certain assumptions can be proved via neural tangent 
kernel theory

Rahaman, N., et al, On the spectral bias of neural networks. 36th International 
Conference on Machine Learning, ICML (2019)



Scaling PINNs to high frequency / multiscale problems

14

Problem: PINNs struggle to solve high-
frequency / multiscale problems

Damped harmonic 
oscillator

As higher frequencies are added:

• More collocation points required
• Larger neural network required
• Spectral bias slows convergence

Leading to a significantly harder 
PINN optimization problem



Scaling PINNs to high frequency / multiscale problems
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The majority of PINN papers focus on solving problems with 
limited frequency ranges / small domains

Goal: how can we scale PINNs to solve real-world problems?

Image credits: 
Lawrence Berkeley 
National Laboratory / 
NOAA / NWS / Pacific 
Tsunami Warning 
Center 



PINNs + domain decomposition
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Idea:

Take a “divide-and-conquer” strategy to model more 
complex problems:

1. Divide modelling domain into many smaller 
subdomains

2. Use a separate neural network in each subdomain to 
model the solution

Hypothesis:

The resulting (coupled) local optimization problems are 
easier to solve than a single global problem

Jagtap, A., et al., Extended physics-informed neural networks 
(XPINNs): A generalized space-time domain decomposition 
based deep learning framework for nonlinear partial differential 
equations. Communications in Computational Physics (2020)



XPINNs

17

Jagtap, A., et al., Extended physics-informed neural networks 
(XPINNs): A generalized space-time domain decomposition 
based deep learning framework for nonlinear partial differential 
equations. Communications in Computational Physics (2020)

XPINNs solving 2D 
Poisson’s equation
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Limitations of XPINN-like strategies
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Jagtap, A., et al., Extended physics-informed neural networks 
(XPINNs): A generalized space-time domain decomposition 
based deep learning framework for nonlinear partial differential 
equations. Communications in Computational Physics (2020)

XPINNs solving 2D 
Poisson’s equation

Limitations:

• Introduces discontinuities in 
solution at subdomain interfaces

• Requires extra loss terms

Boundary loss
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Finite basis PINNs (FBPINNs)

19

Moseley et al, Finite Basis Physics-Informed Neural Networks (FBPINNs): a scalable 
domain decomposition approach for solving differential equations, ArXiv (2021), 
ACM (2023)

Idea: use overlapping subdomains and a 
globally defined solution ansatz



FBPINNs in 1D
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Window 
function

Subdomain 
network

Individual subdomain 
normalisation

Moseley et al, Finite Basis Physics-Informed Neural Networks (FBPINNs): a scalable 
domain decomposition approach for solving differential equations, ArXiv (2021), 
ACM (2023)

Idea: use overlapping subdomains and a 
globally defined solution ansatz
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Moseley et al, Finite Basis Physics-Informed Neural Networks (FBPINNs): a scalable 
domain decomposition approach for solving differential equations, ArXiv (2021), 
ACM (2023)

Advantages:

• By construction, FBPINN solution is continuous 
across subdomain interfaces

• Can be trained with same loss function as PINNs



FBPINNs in 1D
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Moseley et al, Finite Basis Physics-Informed Neural Networks (FBPINNs): a scalable 
domain decomposition approach for solving differential equations, ArXiv (2021), 
ACM (2023)

Advantages:

• By construction, FBPINN solution is continuous 
across subdomain interfaces

• Can be trained with same loss function as PINNs

Note:

• Communication is carried out when summing 
subdomains in their overlap regions

• FBPINNs can simply be thought of as a custom NN 
architecture for PINNs



FBPINNs vs PINNs
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Problem: physics-informed neural networks 
struggle to model high-frequency / multiscale 
problems

FBPINN solution

Damped harmonic 
oscillator

Number of subdomains: 20
Subdomain network size: 1 hidden layer, 16 hidden units



FBPINN hyperparameter sensitivities
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Laplacian problem:

−Δ𝑢 = 𝑓 in Ω = 0,1 !

𝑢 = 0 on 𝜕Ω
𝑓 = 32 𝑥" 1 − 𝑥" + 𝑥! 1 − 𝑥!



FBPINN hyperparameter sensitivities
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Accuracy increases with:

• Size of overlap between subdomains
• Size (expressivity) of subdomain 

networks

But reduces with:

• Number of subdomains (!)

Laplacian problem:

−Δ𝑢 = 𝑓 in Ω = 0,1 !

𝑢 = 0 on 𝜕Ω
𝑓 = 32 𝑥" 1 − 𝑥" + 𝑥! 1 − 𝑥!



FBPINN hyperparameter sensitivities
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Accuracy increases with:

• Size of overlap between subdomains
• Size (expressivity) of subdomain 

networks

But reduces with:

• Number of subdomains (!)

This is analogous to single-level classical 
Schwarz domain decomposition methods

Because communication is limited to 
overlapping regions



Multilevel FBPINNs
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Dolean, V., et al, Multilevel domain decomposition-based architectures for physics-
informed neural networks, ArXiv (2023) 

Idea:

Use multiple levels of domain decompositions

Hypothesis:

Improves global communication and helps 
model multi-scale solutions

Individual subdomain 
solutions

FBPINN solution
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Idea:

Use multiple levels of domain decompositions

Hypothesis:

Improves global communication and helps 
model multi-scale solutions

Individual subdomain 
solutions

FBPINN solution

Represent solution as a summation over all levels
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Multilevel FBPINNs vs FBPINNs
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• Adding coarser levels significantly 
improves accuracy

Laplacian problem:

−Δ𝑢 = 𝑓 in Ω = 0,1 !

𝑢 = 0 on 𝜕Ω
𝑓 = 32 𝑥" 1 − 𝑥" + 𝑥! 1 − 𝑥!



Parallel implementation of FBPINNs
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FBPINNs are highly parallelizable:

• Each subdomain solution and its gradients can be computed in parallel

• Only points inside each subdomain are required to train each subdomain network

• Communication is only required when summing solutions in overlap regions

• FBPINNs typically require much smaller subdomain networks than PINNs

FBPINN training time: 10 mins
PINN training time: 2 hours

Problem: 2D multiscale Laplacian
With 7 frequencies spanning 2" to 2)

FBPINN subdomain 
network size: 1 hidden 
layer, 16 hidden units

PINN subdomain network 
size: 5 hidden layer, 256 
hidden units



Parallel implementation of FBPINNs
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FBPINNs are highly parallelizable:

• Each subdomain solution and its gradients can be computed in parallel

• Only points inside each subdomain are required to train each subdomain network

• Communication is only required when summing solutions in overlap regions

• FBPINNs typically require much smaller subdomain networks than PINNs

• Subdomain scheduling can be used to fix parameters 
of certain subdomain networks during training

• E.g. time-stepping scheduling for causal problems



High frequency / multiscale simulation with PINNs

32

Solving the 2+1D acoustic wave equation:

∇!𝑢 𝑥, 𝑡 −
1

𝑐 𝑥 !
𝜕!𝑢 𝑥, 𝑡
𝜕𝑡! = 0

Number of subdomains: 30 x 30 x 30 = 27,000
Subdomain network size: 1 hidden layer, 8 hidden units
Total number of free parameters: 1.1 M
Number of collocation points: 150 x 150 x 150 = 3.4 M
Optimiser: Time-stepping scheduling, Adam 0.001 lr
Training time: ~2 hr



Limitations / future work
Limitations:
• Training time of FBPINNs is still typically slower than FD/FEM simulation for many problems
• Performance for high-dimensional PDEs not studied yet
• Communication of complex boundary conditions can still be challenging

33



Limitations / future work
Limitations:
• Training time of FBPINNs is still typically slower than FD/FEM simulation for many problems
• Performance for high-dimensional PDEs not studied yet
• Communication of complex boundary conditions can still be challenging

Ongoing work:
• Learnable / adaptive domain decompositions
• More advanced scheduling / multilevel designs
• Updated open-source FBPINN library

• V1.0 code available here: github.com/benmoseley/FBPINNs 
• V2.0 JAX code coming soon
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