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» Selecting the best regularization parameter in inverse problems is a
classical and yet challenging problem.

» We propose and study a statistical machine learning approach based
on empirical risk minimization.

» Our main contribution is a theoretical analysis, showing that, provided
with enough data, this approach can reach sharp rates.

Model and Approach

Let A: X — Y, X, Y Hilbert spaces, be an operator and x* € X, y € )
be such that

y=A(X")+9d, o noise.

To overcome ill-posedness, we consider, for every A > 0, the family of
regularization methods X, = X\ (y). A good choice for A should lead to a
good reconstruction:

Xay) ~ x7.
Question: How to formalize this?

Data-driven approach

1. We turn from deterministic to stochastic inverse problems:
Y = A(X) + 6,
where Y, X and ¢ are random variables.

2. We assume to have pairs (y;, x;) ~ (Y, X), I = 1,...,n, and we find a

minimizer of the empirical risk:

Y= arg min L(X/\
AEN

j{:gl&w)C\)ﬁ»)

for a certain bounded discrepancy ¢, bounded by M > 0, and a set of
candidates A = {\1,..., \n}, N € N.

3. Compute an upper bound for L(X5 ), where

Ap € argmin L(X)) =
AEA

Assumptions and main result

Assumption 1 We assume that E[0|X] = 0 and, moreover, that there
exists = > 0 such that

(X, X)) -

Assumption 2 We assume, for every \ > 0, that
L(X)) < e(N).

where ¢ attains its minimum in \,., and there exists C = C(q) such that, for
allg > 1,

e(g)) < C(g)e(N).

Assumption 3 Assume A= {\j=\Q ',j=1,...,N}, Q> 1, with

>\1 S)\* S)\N

Theorem 1 Let Assumptions 1, 2 and 3 be satisfied and let n € (0, 1].
Then, with probability at least 1 — n,

C(Q)e(Ay) + M log ﬂl

~ ) <
L(X5,) < log =

where the r.n.s goes to 0 as n — oo (Up to a constant).
Idea: Combine

L(XX ) < 2L(X),) + M log %’
and
L(Xx,) < L(Xga,) < e(gAs) < C(Q)e(As)-
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Spectral Regularization Methods

Consider

X\ = gx(A*A)A*Y

where A is linear and g, A > 0, are spectral functions (e.g. Tikhonov,
Landweber, TSVD). Choose 4(X, X)) = || X — X]||?. Then,

Theorem 2 There exist constants o, C1, Co > 0 such that

“Nonlinear” Tikhonov Regularization

We consider, for every A > 0 and a certain initialization variable Xp,

Xy = argmin ||A(x) — Y2+ \|x — X2,

xeXx
where A is non-linear. Choose 4(X, X)) = || X, — X]|*. Then,

Theorem 3 There exist constants ¢i, ¢co > 0 such that

(7% + cA) (1 + )

Sparsity Inducing Regularizers

We finally consider, for every A > 0,

X\ = argmin ||[Ax — Y||* + || Gx|

XeRd

where A is linear and G: R — R”" is linear and bounded. Choose

(X, X)) = Dy(X, X)) the Bregman divergence. Then,
Theorem 4 T[here exists a constant ¢ > 0 such that
N C°
5()\) = T + 5

Expected risk behaviour

Expected risk behaviour
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We plot here the expected risk w.r.t. X(n) for both Tikhonov regulariza-
tion and the Landweber iteration with 7 = 0.1. The solid lines represent
the mean value, while the shaded areas are the 1-percentiles and 99-
percentiles over 30 trials.
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