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Abstract
▶ Selecting the best regularization parameter in inverse problems is a

classical and yet challenging problem.
▶ We propose and study a statistical machine learning approach based

on empirical risk minimization.
▶ Our main contribution is a theoretical analysis, showing that, provided

with enough data, this approach can reach sharp rates.

Model and Approach
Let A : X → Y, X , Y Hilbert spaces, be an operator and x∗ ∈ X , y ∈ Y
be such that

y = A(x∗) + δ, δ noise.

To overcome ill-posedness, we consider, for every λ > 0, the family of
regularization methods Xλ = Xλ(y ). A good choice for λ should lead to a
good reconstruction:

Xλ(y ) ∼ x∗.

Question: How to formalize this?

Data-driven approach

1. We turn from deterministic to stochastic inverse problems:

Y = A(X ) + δ,

where Y , X and δ are random variables.

2. We assume to have pairs (yi , xi ) ∼ (Y , X ), i = 1, ..., n, and we find a
minimizer of the empirical risk:

λ̂Λ ∈ arg min
λ∈Λ

L̂(Xλ) :=
1
n

n∑
i=1

ℓ(xi , Xλ(yi ))),

for a certain bounded discrepancy ℓ, bounded by M > 0, and a set of
candidates Λ = {λ1, ...,λN}, N ∈ N.

3. Compute an upper bound for L(Xλ̂Λ
), where

λΛ ∈ arg min
λ∈Λ

L(Xλ) := E [ℓ(X , Xλ)] .

Assumptions and main result
Assumption 1 We assume that E[δ|X ] = 0 and, moreover, that there
exists τ > 0 such that

E[∥δ∥2
Y |X ] ≤ τ2.

Assumption 2 We assume, for every λ > 0, that

L(Xλ) ≤ ε(λ).

where ε attains its minimum in λ∗, and there exists C = C(q) such that, for
all q > 1,

ε(qλ) ≤ C(q)ε(λ).

Assumption 3 Assume Λ = {λj = λ1Q j−1, j = 1, ... , N}, Q > 1, with

λ1 ≤ λ∗ ≤ λN .

Theorem 1 Let Assumptions 1, 2 and 3 be satisfied and let η ∈ (0, 1].
Then, with probability at least 1 − η,

L(Xλ̂Λ
) ≲ C(Q)ε(λ∗) +

M
n

log
2N
η

,

where the r.h.s goes to 0 as n → ∞ (up to a constant).
Idea: Combine

L(Xλ̂Λ
) ≲ 2L(XλΛ

) +
M
n

log
2N
η

and
L(XλΛ

) ≤ L(Xqλ∗ ) ≤ ε(qλ∗) ≤ C(Q)ε(λ∗).

Spectral Regularization Methods
Consider

Xλ = gλ(A∗A)A∗Y

where A is linear and gλ, λ > 0, are spectral functions (e.g. Tikhonov,
Landweber, TSVD). Choose ℓ(X , Xλ) = ∥Xλ − X∥2. Then,

Theorem 2 There exist constants α, C1, C2 > 0 such that

ε(λ) =
C2

1τ
2

λ
+ C2

2λ
2α.

“Nonlinear” Tikhonov Regularization
We consider, for every λ > 0 and a certain initialization variable X0,

Xλ = arg min
x∈X

∥A(x) − Y∥2 + λ∥x − X0∥2,

where A is non-linear. Choose ℓ(X , Xλ) = ∥Xλ − X∥2. Then,

Theorem 3 There exist constants c1, c2 > 0 such that

ε(λ) = c1
(τ2 + c2λ)(1 + λ)

λ
.

Sparsity Inducing Regularizers
We finally consider, for every λ > 0,

Xλ = arg min
x∈Rd

∥Ax − Y∥2 + ∥Gx∥1

where A is linear and G : Rd → Rn is linear and bounded. Choose
ℓ(X , Xλ) = DJ (X , Xλ) the Bregman divergence. Then,

Theorem 4 There exists a constant c > 0 such that

ε(λ) =
τ2λ

2
+

c2

2λ
.

Expected risk behaviour
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We plot here the expected risk w.r.t. λ̂(n) for both Tikhonov regulariza-
tion and the Landweber iteration with τ = 0.1. The solid lines represent
the mean value, while the shaded areas are the 1-percentiles and 99-
percentiles over 30 trials.
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