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Motivation

⋆ Forward model: y = D
(
Φx

)
• x ∈ RN : original image
• Φ: RN → RM : linear measurement operator
• D : RM → RM : degradation model (e.g., additive Gaussian noise)

Objective : Find an estimate x̂ of x from y

⋆ Example: Image restoration (e.g., deblurring)

Observation

?
⇝

Estimate
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• x ∈ RN : original image
• Φ: RN → RM : linear measurement operator
• D : RM → RM : degradation model (e.g., additive Gaussian noise)

Objective : Find an estimate x̂ of x from y

⋆ Example: Medical imaging (CT)
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⇝
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Motivation

⋆ Forward model: y = D
(
Φx

)
• x ∈ RN : original image
• Φ: RN → RM : linear measurement operator
• D : RM → RM : degradation model (e.g., additive Gaussian noise)

Objective : Find an estimate x̂ of x from y

⋆ Example: Radio-interferometric imaging in astronomy

Observation

?
⇝

Estimate
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Minimization problem

⋆ variational approach: Find x̂ ∈ Argmin
x∈C

hy(x) + λg(x)

• hy data fidelity term
• λ > 0 and g regularization term (e.g., TV or ℓ1 in a wavelet domain)
• C ⊂ RN feasibility set

Examples:

⋆ Gaussian noise: hy(x) =
1
2
∥Φx− y∥2

⋆ Poisson noise: hy(x) =
M∑

m=1

([Φx]m − zm log([Φx]m))

⋆ Energy-bounded noise: hy(x) = ιB2(y,ϵ)

(
Φx

)
=

{
0 if Φx ∈ B2(y, ϵ)

+∞ otherwise.
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Minimization problem

⋆ variational approach: Find x̂ ∈ Argmin
x∈C

hy(x) + λg(x)

• hy data fidelity term
• λ > 0 and g regularization term (e.g., TV or ℓ1 in a wavelet domain)
• C ⊂ RN feasibility set

Examples of regularisation terms

⋆ Admissibility constraints: g(x) =
L∑

l=1

ιCl(x)

⋆ ℓ1 norm (analysis approach) g(x) =

L∑
l=1

|[Ψx]l| = ∥Ψx∥1
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Iterative optimisation (proximal) methods

Objective: Find x̂ ∈ Argmin
x∈RN

h(x) + g(x) with h ∈ Γ0(RN ) and g ∈ Γ0(RN )

⇝ Can be solved using proximal algorithms

• Proximity operator of g at x ∈ RN defined as proxg(x) = Argmin
y∈RN

g(y) + 1
2
∥y − x∥2

Objective: Generate a sequence (xk)k∈N converging to x̂ with (∀k ∈ N) xk+1 = T (xk)

Examples: Recursive operator T : RN → RN reminiscent from algorithms such as forward-backward,
Douglas-Rachford, forward-backward-forward (Tseng), ADMM, Primal-dual (Chambolle-Pock, Condat-
Vũ), etc.
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Plug-and-play methods

In a nutshell: Replace some operator(s) in the iterations with a learned version

Example: We want to minimize
x∈RN

1
2∥Φx− y∥2 + g(x)

FB iterations: (∀k ∈ N) xk+1 = proxγg

(
xk − γΦ∗(Φxk − y)

)
• Approximated model: Replace Φ and Φ∗ (unknown) by learned approximations Φ̃ and Φ̃∗:

(∀k ∈ N) xk+1 = proxγg

(
xk − γΦ̃∗(Φ̃xk − y)

)
• More powerful regularizer/denoiser: Replace proxγg by hand-crafted (e.g., BM3D) or learned

(e.g., neural network) regularizer/denoiser J : RN → RN :

(∀k ∈ N) xk+1 = J
(
xk − γΦ∗(Φxk − y)

)
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Plug-and-play methods

In a nutshell: Replace some operator(s) in the iterations with a learned version

Example:
• Approximated model: (∀k ∈ N) xk+1 = proxγg

(
xk − γΦ̃∗(Φ̃xk − y)

)
• More powerful regularizer/denoiser: (∀k ∈ N) xk+1 = J

(
xk − γΦ∗(Φxk − y)

)
How to build reliable PnP methods?

PnP iterations: Can we use any scheme?

NN architectures: Can we use any denoising NN?

Theoretical understanding?

Asymptotic convergence: Does (xk)k∈N still converge?

Characterisation of the limit point: If (xk)k∈N converges to x̂, what is x̂?

See, e.g., [Hasannasab et al., 2020], [Terris et al., 2020], [Cohen et al., 2021], [Pesquet et al., 2021], [Hurault
et al., 2021], [De Bortorli et al., 2021], ...
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Objectives and outline

• Adopt a variational/monotone inclusion formulation instead of traditional variational
formulation

⇝ Use Maximally Monotone Operator (MMO) theory

• Learn monotone operators and resolvent of MMOs to generalize gradients and proximity
operators, respectively

⇝ Use a regularization during training to penalize the Lipschitz constant of the network

• Use these approaches to design convergent plug-and-play algorithms

⇝ Learn denoiser to replace resolvent operator (≈ proximity operator)

⇝ Learn forward model to replace monotone operator (≈ gradient operator)
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MMO theory
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Maximally Monotone Operators (MMOs)

Let A : H → 2H be a multivariate operator

• A is monotone if, for every (x1, x2) ∈ H2, u1 ∈ Ax1 and u2 ∈ Ax2,

⟨x1 − x2 | u1 − u2⟩ ⩾ 0

• A is maximally monotone if and only if, for every (x1, u1) ∈ H2,

u1 ∈ Ax1 ⇔ (∀x2 ∈ H)(∀u2 ∈ Ax2)⟨x1 − x2 | u1 − u2⟩ ⩾ 0

i.e., if there is no monotone operator that properly contains it

• The resolvent of A is JA = (Id +A)−1

Particular case: Let g ∈ Γ0(RN ).

• ∂g is an MMO

• proxg = J∂g
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Monotone inclusion problem

Variational inclusion problem: Let h ∈ Γ0(RN ) and g ∈ Γ0(RN )

0 ∈ ∂h(x̂) + ∂g(x̂) ⇒ x̂ ∈ Argmin
x∈RN

h(x) + g(x)

Monotone inclusion problem:

0 ∈ ∂h(x̂) + ∂g(x̂) is a particular case of 0 ∈ ∂h(x̂) +A(x̂), where A is an MMO

Idea: Learn A instead of g

⋆ More flexible as ∂g is a particular case of MMOs

⋆ Most of proximal algorithms are derived from MMO theory (e.g., FB, primal-dual Condat-Vũ,
Douglas-Rachford, etc.)

Example: FB algorithm: (∀k ∈ N) xk+1 = JγkA (xk − γk∇h(xk))
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Learning firmly nonexpansive NNs

• J.-C. Pesquet, A.R., M. Terris, and Y. Wiaux. Learning maximally monotone operators for image recovery,
SIAM Journal on Imaging Sciences, 14(3):1206-1237, August 2021.
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PnP for monotone inclusion problems: Learning a resolvent

⋆ Same principle as PnP from proximal algorithms:

❶ Choose any algorithm whose proof is based on MMO theory
❷ Replace the resolvent operator JA by a learned denoiser J̃

Let (xk)k∈N be a sequence generated by a PnP algorithm.

• If J̃ is firmly nonexpansive, then (xk)k∈N converges to x̂.

• J is µ-Lipschitz , with µ > 0, if (∀(x1, x2) ∈ H2) ∥J(x1)− J(x2)∥ ⩽ µ∥x1 − x2∥

• If J is 1-Lipschitz, then it is nonexpansive

• J is firmly nonexpansive if (∀(x1, x2) ∈ H2) ∥J(x1)− J(x2)∥2 ⩽ ⟨x1 − x2 | J(x1)− J(x2)⟩
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PnP for monotone inclusion problems: Learning a resolvent

⋆ Same principle as PnP from proximal algorithms:

❶ Choose any algorithm whose proof is based on MMO theory
❷ Replace the resolvent operator JA by a learned denoiser J̃

Let (xk)k∈N be a sequence generated by a PnP algorithm.

• If J̃ is firmly nonexpansive, then (xk)k∈N converges to x̂.

• For J̃ = Id +Q
2 , with Q nonexpansive, ∃A MMO s.t. 0 ∈ ∂h(x̂) +A(x̂) .

Let A : H → 2H. The following are equivalent

• A is an MMO.

• JA is firmly nonexpansive

• JA : H → H : x 7→ x+Q(x)
2 , for Q : H → H nonexpansive.

Then A = 2(Id +Q)−1 − Id
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Learn MMOs?

☛ Use NNs to approximate the resolvent of an MMO

⇝ Choose J̃ = Id +Q
2 , where Q is nonexpansive

✔ Convergence of PnP (any iteration scheme whose convergence proof is based on MMOs)

✔ Characterization of the limit point as a solution to a monotone inclusion problem

✔ Approximation theorem ensuring (stationary) MMOs can be approximated by feedforward NNs

✔ Training method to ensure NN Q to be nonexpansive
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Jacobian regularization for FNE NNs

⋆ Network: J̃θ : RN → RN with learnable parameters θ ∈ RP (e.g., convolutional kernels)

⋆ Training set: Pairs of groundtruth/observations (xℓ, yℓ)1⩽ℓ⩽L, with (xℓ, yℓ) ∈ (RN )2

Example of denoising network: (∀ℓ ∈ {1, . . . , L}) yℓ = xℓ + σwℓ

where σ > 0 and wℓ realization of standard normal i.i.d. random variable

⋆ Training minimization problem:

minimize
θ∈RP

L∑
ℓ=1

∥J̃θ(yℓ)− xℓ∥2 s.t. Qθ = 2J̃θ − Id is nonexpansive
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⋆ Network: J̃θ : RN → RN with learnable parameters θ ∈ RP (e.g., convolutional kernels)

⋆ Training set: Pairs of groundtruth/observations (xℓ, yℓ)1⩽ℓ⩽L, with (xℓ, yℓ) ∈ (RN )2

Example of denoising network: (∀ℓ ∈ {1, . . . , L}) yℓ = xℓ + σwℓ

where σ > 0 and wℓ realization of standard normal i.i.d. random variable

⋆ Training minimization problem:

minimize
θ∈RP

L∑
ℓ=1

∥J̃θ(yℓ)− xℓ∥2 s.t. (∀x ∈ RN ) ∥∇∇∇Qθ(x)∥ ⩽ 1

� In practice one cannot enforce ∥∇∇∇Qθ(x)∥ ⩽ 1 for all x ∈ H.
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Jacobian regularization for FNE NNs

⋆ Network: J̃θ : RN → RN with learnable parameters θ ∈ RP (e.g., convolutional kernels)

⋆ Training set: Pairs of groundtruth/observations (xℓ, yℓ)1⩽ℓ⩽L, with (xℓ, yℓ) ∈ (RN )2

Example of denoising network: (∀ℓ ∈ {1, . . . , L}) yℓ = xℓ + σwℓ

where σ > 0 and wℓ realization of standard normal i.i.d. random variable

⋆ Training minimization problem:

minimize
θ∈RP

L∑
ℓ=1

∥J̃θ(yℓ)− xℓ∥2 + λmax
{
∥∇∇∇Qθ(x̃ℓ)∥2, 1− ε

}
where λ > 0, ε > 0, and (∀ℓ ∈ {1, . . . , L}) x̃ℓ = ϱℓxℓ + (1− ϱℓ)J̃θ(yℓ), with ϱℓ realization of a
r.v. with uniform distribution on [0, 1]

⋆ ∥∇∇∇Qθ(x̃ℓ)∥2 computed using Jacobian-vector product in Pytorch and auto-differentiation,
within power iterations

⋆ Can be solved using, e.g., SGD or Adam...
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Jacobian regularisation: Training results

• Choose J̃θ = Id+Qθ

2 to be a denoising DnCNN

• ImageNet test set converted to grayscale images in [0, 255]

• Choose λ > 0 to ensure Qθ to be 1-Lipschitz

Illustration: Fix σ = 3 and vary λ

λ 0 5×10−7 1×10−6 5×10−6 1×10−5 4×10−5 1.6×10−4 3.2×10−4

maxx ∥∇∇∇Qθ(x)∥2 31.36 1.65 1.349 1.028 0.9799 0.9449 0.9440 0.9401

➤ λ ⩾ 10−5 ⇒ maxx ∥∇∇∇Qθ(x)∥2 ⩽ 1 ⇒ J̃θ firmly nonexpansive
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Jacobian regularisation: Training results

• Choose J̃θ = Id+Qθ

2 to be a denoising DnCNN

• ImageNet test set converted to grayscale images in [0, 255]

• Choose λ > 0 to ensure Qθ to be 1-Lipschitz

Illustration: Vary σ ∈ {5, 10, 30}, choose λ > 0 such that maxx ∥∇∇∇Qθ(x)∥2 ⩽ 1

σ λ maxx ∥∇Qθ(x)∥ PSNR (dB)
5 1e− 03 0.9926 36.65
10 5e− 03 0.9905 32.12
20 1e− 02 0.9598 28.40
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Case of the Primal-dual PnP algorithm for monotone inclusion problems
with firmly nonexpansive denoising network

–

Application to Computational Optical Imaging with a Photonic lantern

• C. S. Garcia, M. Larcheveque, S. O’Sullivan, M. Van Waerebeke, R. R. Thomson, A.R., and J.-C. Pesquet. A
primal-dual data-driven method for computational optical imaging with a photonic lantern, PNAS Nexus,
3(4):164, April 2024
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Monotone inclusion problem: Morozov formulation

• Variational minimization problem: Find x̂ ∈ Argmin
x∈RN

ιB2(y,ε)(Φx) + g(x)

• Can be rewritten as a variational inclusion problem:

Find x̂ ∈ RN such that 0 ∈ Φ∗NB2(y,ε)(Φx̂) + ∂g(x̂)

where NS denotes the normal cone of some set S defined as

NS(x) =

{
{u ∈ H | (∀y ∈ S) ⟨u | y − x⟩ ⩽ 0}, if x ∈ S,

∅, otherwise.

• Particular case of monotone inclusion problem:

Find x̂ ∈ RN such that 0 ∈ Φ∗NB2(y,ε)(Φx̂) + A(x̂) , where A is an MMO

Idea: • Use primal-dual algorithm [Chambolle, Pock, 2011][Condat, 2013][Vũ, 2013]

• Approximate the resolvent JA of A by a FNE NN J̃θ
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Proposed primal-dual PnP method

Let (x0, v0) ∈ RN × RM and (τ, σ) ∈]0,+∞[2

for k = 0, 1, . . . do
xk+1 = J̃θ

(
xk − τΦ∗uk

)
ũk = uk + σΦ(2xk+1 − xk)
uk+1 = ũk − σ proxσ−1h

(
σ−1ũk

)
end for

Convergence:

Assume that τσ∥Φ∥2 < 1, and that J̃θ = Id+Qθ

2 , where Qθ is a 1-Lipschitz NN.

Let Ã be the MMO equal to J̃−1
θ − Id.

Assume that there exists at least a solution x̂ to the inclusion 0 ∈ Φ∗NB2(y,ε)(Φx̂) + τ−1Ã(x̂)

Then (xk)k∈N converges to a such a solution.
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Application to computational optical imaging with a photonic lantern

Objective:

• Optical fibres used for imaging in-vivo biological processes, e.g., microendoscopy

• Fibre must be stable to movements (e.g., bending)

• Produce accurate imaging (with high spatial resolution)

• Highly compressed observed data

Experimental setup used to acquire the data
during the photonic lantern imaging experiments
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Imaging inverse problem [Choudhury et al., 2020]

Inverse problem: z = Φx+ w

⋆ x ∈ RN is the original unknown image (N = 377× 377)

⋆ Φ ∈ RM×N is the measurement matrix
• Each row of Φ contains a pattern generated by the fiber
• 11× 11 = 121 patterns can be generated ⇝ M/N ≈ 0.085%

+ 9 possible rotations of 40◦ (= 1089 patterns) ⇝ M/N ≈ 0.77%

⋆ w is a realization of a random noise assumed to have bounded energy

Objective: Find an estimate x̂ of x from z

Examples of patterns:
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Experimental COIL data results: cross 121 patterns

Ground truth

SARA-COIL

ε = 2 ε = 2.5 ε = 3 ε = 3.5

(20.84, 0.331) (24.37, 0.366) (25.16, 0.470) (25.69, 0.402)

(21.33, 0.379) (23.45, 0.410) (26.55, 0.443) (26.78, 0.461)

(24.37, 0.415) (26.15, 0.446) (26.97, 0.468) (27.90, 0.491)



Introduction MMOs PnP with FNE NNs PnP with Monotone NNs Conclusion

A. Repetti et al. ⋆ Learning Monotone Operators for Computational Imaging ⋆ 20/38

Experimental COIL data results: cross 1089 patterns

Ground truth

SARA-COIL

ε = 6 ε = 17 ε = 8 ε = 9

(17.90, 0.409) (20.40, 0.439) (27.23, 0.470) (28.68, 0.504)

(19.51, 0.460) (22.13, 0.498) (28.98, 0.550) (30.80, 0.580)

(19.01, 0.463) (21.98, 0.505) (24.67, 0.547) (30.13, 0.584)
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Experimental COIL data results: dots 1089 patterns

Ground truth

SARA-COIL

ε = 12 ε = 13 ε = 14 ε = 15

(21.82, 0.470) (22.55, 0.502) (23.15, 0.537) (23.56, 0.573)

(21.70, 0.496) (22.58, 0.538) (23.16, 0.583) (23.17, 0.610)

(19.76, 0.563) (22.17, 0.570) (23.09, 0.608) (22.34, 0.616)
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Learning monotone operators

• Younes Belkouchi, J.-C. Pesquet, A.R., and H. Talbot. Learning truly monotone operators with applications to
nonlinear inverse problems, SIAM Journal on Imaging Sciences, 18(1), 735-764, 2025.
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PnP for monotone inclusion problems: Learning a monotone operator

⋆ Same principle as PnP from proximal algorithms:

❶ Choose any algorithm whose proof is based on MMO theory
❷ Replace the monotone (continuous) operator A by a learned approximation Ã

✔ Convergence of PnP (any iteration scheme whose convergence proof is based on MMOs)

✔ Characterization of the limit point as a solution to a monotone inclusion problem

✔ Training method to ensure NN Ã to be monotone
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Link between monotone operators and Jacobian properties

Let A : RN → RN be Fréchet differentiable, and β ⩾ 0 Then we have:

A is β-strongly monotone ⇔ (∀x ∈ RN ) ∇∇∇sA(x) ≽ βId ⇔ (∀x ∈ RN ) ∇∇∇sRA(x) ≽ (2β − 1)Id

• A is β-strongly monotone , with β ⩾ 0, if (∀(x1, u2) ∈ GraphA)(∀(x2, u2) ∈ GraphA)

⟨u1 − u2 | x1 − x2⟩ ⩾ β∥x1 − x2∥2
• If β = 0, then A is monotone

• The reflected operator of A if given by RA = 2A− Id

• The symmetric part of the Jacobian of A if given by ∇∇∇sA = ∇∇∇A+(∇∇∇A)⊤

2
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Let A : RN → RN be Fréchet differentiable, and β ⩾ 0 Then we have:

A is β-strongly monotone ⇔ (∀x ∈ RN ) ∇∇∇sA(x) ≽ βId ⇔ (∀x ∈ RN ) ∇∇∇sRA(x) ≽ (2β − 1)Id

Particular case: A is monotone iff for every x ∈ RN

• λmin

(
∇∇∇sA(x)

)
⩾ 0 with ∇∇∇sA = ∇∇∇A+(∇∇∇A)⊤

2

• λmin

(
∇∇∇sRA(x)

)
⩾ −1 with RA = 2A− Id
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Jacobian regularization for monotone networks

⋆ Network: Ãθ : RN → RN with learnable parameters θ ∈ RP (e.g., convolutional kernels)

⋆ Training set: Pairs of groundtruth/observations (xℓ, yℓ)1⩽ℓ⩽L, with (xℓ, yℓ) ∈ (RN )2

⋆ Training minimization problem:

minimize
θ∈RP

L∑
ℓ=1

∥Ãθ(yℓ)− xℓ∥2 s.t. Ãθ is monotone
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Jacobian regularization for monotone networks

⋆ Network: Ãθ : RN → RN with learnable parameters θ ∈ RP (e.g., convolutional kernels)

⋆ Training set: Pairs of groundtruth/observations (xℓ, yℓ)1⩽ℓ⩽L, with (xℓ, yℓ) ∈ (RN )2

⋆ Training minimization problem:

minimize
θ∈RP

L∑
ℓ=1

∥Ãθ(yℓ)− xℓ∥2 s.t. (∀x ∈ RN ) λmin

(
∇∇∇sRÃθ

(x)
)
⩾ −1

� In practice one cannot enforce λmin

(
∇∇∇sRÃθ

(x)
)
⩾ −1 for all x ∈ RN

� How to compute λmin

(
∇∇∇sRÃθ

(x)
)
?
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Jacobian regularization for monotone networks

⋆ Network: Ãθ : RN → RN with learnable parameters θ ∈ RP (e.g., convolutional kernels)

⋆ Training set: Pairs of groundtruth/observations (xℓ, yℓ)1⩽ℓ⩽L, with (xℓ, yℓ) ∈ (RN )2

⋆ Training minimization problem:

minimize
θ∈RP

L∑
ℓ=1

∥Ãθ(yℓ)− xℓ∥2−ζmin
{
1 + λmin

(
∇∇∇sRÃθ

(xℓ)
)
, ε
}

where ζ > 0, ε > 0

⋆ λmin

(
∇∇∇sRÃθ

(xℓ)
)
= ϱ(xℓ)− λmax

(
ϱ(xℓ)Id −∇∇∇sRA(xℓ)

)
with ϱ(x) ⩾ λmax

(
∇∇∇sRA(xℓ)

)
⋆ Use Jacobian-vector product in Pytorch and auto-differentiation, combined with two power

iterations

⋆ Can be solved using, e.g., SGD or Adam...
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Case of the Forward-Backward-Forward PnP algorithm
for monotone inclusion problems

Application to learning non-linear model approximations
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Monotone inclusion problem

Monotone inclusion problem: We want to

Find x̂ ∈ RN such that 0 ∈ A(x̂) + ∂h(x̂) +NC(x̂)

where

• C is a closed convex set of RN

• h : RN → R proper lsc convex and continuously differentiable on C ⊂ int(domh)

• A monotone continuous operator defined on C

Idea: • Approximate operator A by a monotone continuous NN Ãθ

• Use a PnP version of the forward-backward-forward iterations [Tseng, 2000]

combined with an Armijo’s rule (to avoid cocoercive assumption on Ãθ)

Note: Most standard NNs are continuous, especially those that use non-expansive activation functions

⇝ So we “only” need to take care of the monotony property during training
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Proposed FBF PnP method

Let x0 ∈ C and (γk)k∈N be a sequence in ]0,+∞[
for k = 0, 1, . . . do

ak = Ãθ(xk) +∇h(xk)
zk = projC(xk − γkak)

xk+1 = projC
(
zk − γk(Ãθ(zk) +∇h(zk)− ak)

)
end for

Armijo-Goldstein rule: Let σ ∈ ]0,+∞[ and (β, θ) ∈]0, 1[2, and define (γk = σβik)k∈N where

(∀k ∈ N) ik = inf
{
i ∈ N

∣∣∣ γ = σβi, γ∥Ãθ(zk) +∇h(zk)− Ãθ(xk)−∇h(xk)∥ ⩽ θ∥zk − xk∥
}
.

Convergence: Let Ãθ be a monotone continuous NN.

Assume that there exists at least a solution x̂ to the inclusion 0 ∈ Ãθ(x̂) + ∂h(x̂) +NC(x̂)

Then (xk)k∈N converges to a such a solution x̂ ∈ dom Ãθ.
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Learning non-linear model approximations: Application to semi-blind non-linear imaging

Non-linear inverse problem: y = F (x) + w

• x ∈ RN original unknown image and w ∈ RM realisation of an additive i.i.d. white Gaussian random
variable with zero-mean and standard deviation σ ⩾ 0

• F : RN → RN : x 7→ 1

J

J∑
j=1

Sδ(Ljx)

• Sδ : RN → RN : x = (xi)1⩽i⩽n 7→ (ψδ(xi))1⩽i⩽n is the Hyperbolic tangent saturation function

defined as ψδ : R → R : x 7→ tanh(δ(2x−1))+1
2

, with δ > 0

• Lj ∈ RN×N are convolution operators, with motion kernels of size 9× 9 (J = 1 or J = 5)
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Remarks on the considered non-linear model

Non-linear inverse problem: y = F (x) + w with F : RN → RN : x 7→ 1

J

J∑
j=1

Sδ(Ljx)

• There is no guarantee that F is monotone!

• In practice F is difficult to handle, so approximations are considered:

• Affine approximation F aff(x) =
δ

J

J∑
j=1

Ljx+
1− δ

2
(not necessarily monotone)

• Linear approximation F lin(x) =
δ

J

J∑
j=1

Ljx (not necessarily monotone)

⇝ Often δ = 1 as unknown

⇝ Both approximations necessitate to know (Lj)1⩽j⩽J

• If δ and/or (Lj)1⩽j⩽J are unknown, one can learn approximations:

• Linear approximation F lin
θ of F (not necessarily monotone)

• Monotone approximation Fmon
θ of F (NN with monotone constraint)

• Non-monotone approximation F nom
θ of F (NN without monotone constraint)
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Simulation setting and compared methods

We consider two monotone inclusion problems.

Direct regularised approach: find x̂ ∈ RN such that 0 ∈ Fθ(x̂)− y + ϱ∇r(x̂) +NC(x̂)

with ϱ > 0, and r : RN → R is a smoothed TV regularisation

⇝ Use FBF-PnP algorithm with h(x) = −⟨y | x⟩ and Ãθ = Fθ + ϱ∇r

Remark: Fθ should be monotone to ensure convergence of the FBF-PnP iterations

Remark 2: Fθ could be either F lin
θ , Fmon

θ , or F nom
θ

Least-squares regularized approach:

find x̂ ∈ RN such that 0 ∈ F lin
θ

⊤
Fθ(x̂)− F lin

θ

⊤
y + ϱ∇r(x̂) +NC(x̂)

with ϱ > 0, and r : RN → R is a smoothed TV regularisation

⇝ Use FBF-PnP algorithm with h(x) = −
〈
F lin
θ

⊤
y | x

〉
and Ãθ = F lin

θ

⊤
Fθ + ϱ∇r

Remark: F lin
θ

⊤
Fθ should be monotone to ensure convergence of the FBF-PnP iterations
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Training results: Testing the learned approximations (BSD68)

Filters Noise Model MAE(y, Fθ(x)) (×10−2) minλmin

(
∇∇∇sFθ(x)

)
(×10−2)

δ = 1 for Sδ

J = 1

σtrain = 0

Fmon
θ 1.5658 (± 0.58) 1.67 > 0

Fnom
θ 0.2932 (± 0.11) −29.99< 0

F̃mon
θ

∗ 0.6822 (± 0.25) 0.69 > 0

F lin
θ 2.1474 (± 1.38) −24.69< 0

σtrain = 0.01

Fmon
θ 1.1575 (± 0.42) 1.10 > 0

Fnom
θ 0.3020 (± 0.11) −27.72< 0

F̃mon
θ

∗ 0.5351 (± 0.19) 1.13 > 0

F lin
θ 2.1607 (± 1.37) −25.87< 0

J = 5

σtrain = 0

Fmon
θ 0.5272 (± 0.20) 1.18 > 0

Fnom
θ 0.2795 (± 0.10) −22.06< 0

F̃mon
θ

∗ 0.6108 (± 0.22) 1.80 > 0

F lin
θ 2.1473 (± 1.38) −13.86< 0

σtrain = 0.01

Fmon
θ 0.9414 (± 0.34) 1.80 > 0

Fnom
θ 0.2714 (± 0.09) −25.48< 0

F̃mon
θ

∗ 0.6591 (± 0.25) 1.64 > 0

F lin
θ 2.1594 (± 1.37) −16.55< 0
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Training results: Testing the learned approximations (BSD68)

Filters Noise Model MAE(y, Fθ(x)) (×10−2) minλmin

(
∇∇∇sFθ(x)

)
(×10−2)

δ = 0.6 for Sδ

J = 1

σtrain = 0

Fmon
θ 1.2816 (± 0.53) 1.91 > 0

Fnom
θ 0.2376 (± 0.09) −18.73< 0

F̃mon
θ

∗ 0.4311 (± 0.14) 0.37 > 0

F lin
θ 8.2009 (± 2.70) −42.79< 0

σtrain = 0.01

Fmon
θ 1.1689 (± 0.45) 1.65 > 0

Fnom
θ 0.2275 (± 0.08) −23.35< 0

F̃mon
θ

∗ 0.4679 (± 0.17) 0.54 > 0

F lin
θ 8.1993 (± 2.69) −43.18< 0

J = 5

σtrain = 0

Fmon
θ 0.7720 (± 0.30) 1.52 > 0

Fnom
θ 0.1435 (± 0.05) −17.38< 0

F̃mon
θ

∗ 0.4327 (± 0.14) 0.40 > 0

F lin
θ 8.1920 (± 2.70) −39.61< 0

σtrain = 0.01

Fmon
θ 0.6867 (± 0.25) 0.66 > 0

Fnom
θ 0.1788 (± 0.06) −19.04< 0

F̃mon
θ

∗ 0.4809 (± 0.15) 0.33 > 0

F lin
θ 8.1969 (± 2.70) −35.39< 0
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Training results: Illustrations of learned approximations (J = 5, δ = 1)

y = F (x) – PSNR = 21.17 yF lin = F lin(x) – MAE = 0.037 yF lin
θ

= F lin
θ (x) – MAE = 0.037

(λmin, λmax) = (−80.52, 81.37) (λmin, λmax) = (−0.09, 1.00) (λmin, λmax) = (−0.14, 0.99)

yFnom
θ

= Fnom
θ (x) – MAE = 0.003 yFmon

θ
= Fmon

θ (x) – MAE = 0.005 y
F̃mon
θ

= Fθ(x) – MAE = 0.006

(λmin, λmax) = (−0.21, 1.01) (λmin, λmax) = (0.01, 1.00) (λmin, λmax) = (0.00, 0.92)
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Training results: Illustrations of learned approximations (J = 5, δ = 0.6)

y = F (x) – PSNR = 17.33 yF lin = F lin(x) – MAE = 0.110 yF lin
θ

= F lin
θ (x) – MAE = 0.111

(λmin, λmax) = (−156.86, 157.59) (λmin, λmax) = (−0.09, 1.00) (λmin, λmax) = (−0.35, 1.00)

yFnom
θ

= Fnom
θ (x) – MAE = 0.009 yFmon

θ
= Fmon

θ (x) – MAE = 0.009 y
F̃mon
θ

= Fθ(x) – MAE = 0.004

(λmin, λmax) = (−0.18, 0.63) (λmin, λmax) = (0.03, 0.61) (λmin, λmax) = (0.00, 0.56)
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Simulation results: PnP restoration with σ = 0.01 (BSD68)

Problem Operator
σtrain = 0 σtrain = 0.01

PSNR SSIM PSNR SSIM
(J, δ) = (1, 1) Direct Fmon

θ 24.56(±3.96) 0.80(±0.11) 24.58(±4.26) 0.80(±0.11)

Least-squares F̃mon
θ 26.32(±4.14) 0.85(±0.04) 28.31(±3.66) 0.89(±0.04)

Least-squares F̃ lin
θ 25.59(±3.14) 0.87(±0.07) 25.59(±3.11) 0.87(±0.07)

(J, δ) = (5, 1) Direct Fmon
θ 27.46(±4.31) 0.87(±0.08) 26.96(±4.13) 0.86(±0.08)

Least-squares F̃mon
θ 28.31(±4.32) 0.89(±0.06) 28.33(±4.33) 0.89(±0.06)

Least-squares F̃ lin
θ 25.21(±3.29) 0.86(±0.08) 25.23(±3.32) 0.86(±0.08)

(J, δ) = (1, 0.6) Direct Fmon
θ 25.17(±3.99) 0.81(±0.10) 25.14(±3.99) 0.81(±0.10)

Least-squares F̃mon
θ 25.33(±3.61) 0.81(±0.07) 26.09(±4.02) 0.83(±0.07)

Least-squares F̃ lin
θ 18.77(±2.71) 0.77(±0.12) 18.77(±2.71) 0.77(±0.12)

(J, δ) = (5, 0.6) Direct Fmon
θ 26.43(±4.23) 0.84(±0.09) 26.63(±4.32) 0.84(±0.09)

Least-squares F̃mon
θ 24.75(±4.33) 0.77(±0.13) 24.73(±4.32) 0.77(±0.13)

Least-squares F̃ lin
θ 18.40(±2.74) 0.72(±0.14) 18.40(±2.74) 0.72(±0.14)
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Simulation results: PnP restoration with σ = 0.01, J = 5, δ = 1 (visual)

x y – (23.96, 0.89) x y – (21.11, 0.65)

x̂
F̃ lin
θ

– (24.67, 0.93) x̂
F̃ lin
θ

– (24.69, 0.93) x̂
F̃ lin
θ

– (22.77, 0.75) x̂
F̃ lin
θ

– (22.79, 0.75)

σtrain = 0 σtrain = 0.01 σtrain = 0 σtrain = 0.01
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Simulation results: PnP restoration with σ = 0.01, J = 5, δ = 1 (visual)

x y – (23.96, 0.89) x y – (21.11, 0.65)

x̂Fmon
θ

– (31.59, 0.93) x̂Fmon
θ

– (30.98, 0.93) x̂Fmon
θ

– (24.95, 0.80) x̂Fmon
θ

– (24.67, 0.80)

σtrain = 0 σtrain = 0.01 σtrain = 0 σtrain = 0.01
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Simulation results: PnP restoration with σ = 0.01, J = 5, δ = 1 (visual)
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Simulation results: PnP restoration with σ = 0.01, J = 5, δ = 0.6
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Conclusion

⋆ Plug-and-play algorithms with FNE NNs and monotone NNs

• Use any proximal algorithm whose proof holds for MMOs
• Ensures convergence of the iterates
• Characterisation of the limit point as solution to monotone inclusion problem

⋆ Training methods for learning FNE NNs and monotone NNs

• Use Jacobian-vector product in Pytorch and auto-differentiation
• Combine with power iterations to compute eigenvalues

⋆ Use monotone learning method to learn optimal maps?

⋆ Other algorithms?
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Approximating the resolvent of an MMO
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Feedforward neural networks

Let (Hm)0⩽m⩽M be real Hilbert spaces such that H0 = HM = H.

A feedforward NN having M layer and both input and ouput in H can be seen as a composition
of operators:

Q = TM · · ·T1

where (∀m ∈ {1, . . . ,M}) Tm : Hm−1 → Hm : x 7→ Rm(Wmx+ bm).

For each layer m ∈ {1, . . . ,M}:
• Rm : Hm → Hm is a nonlinear activation operator

• Wm : Hm−1 → Hm is a bounded linear operator corresponding to the weights of the network

• bm ∈ Hm is a bias parameter vector

Notation: NF (RN ) denotes the class of nonexpansive feedforward NNs
• with inputs and outputs in RN

• built from a given dictionary F of activation operators
• F contains the identity operator, and the sorting operator performed on blocks of size 2

In other words, a network in NF (RN ) can be linear, or it can be built using max-pooling with
blocksize 2 and any other kind of activation function provided that the resulting structure is 1-
Lipschitz.
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Stationary MMOs

Let (Hk)1⩽k⩽K be real Hilbert spaces.

An operator A defined on the product space space H = H1 × · · · × HK is a stationary MMO if
its resolvent JA : H → H satisfies

(∀k ∈ {1, . . . ,K}) (∃Πk ∈ B(H,Hk) (∃Ωk ∈ S+(H) such that(
∀(x, y) ∈ H2

)
∥Πk

(
2JA(x)− x− 2JA(y) + y

)
∥2 ⩽ ⟨x− y | Ωk(x− y)⟩

with
K∑

k=1

Π∗
k Πk = Id and

∥∥∥∑K
k=1 Ωk

∥∥∥ ⩽ 1

Remark: If A is a stationary MMO, then it is an MMO

B(H,Hk) denotes bounded linear operators from H to Hk

S+(H) denotes self-adjoint nonnegative operators from H to H
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Stationary MMOs: Examples

⋆ A = U∗BU is a stationary MMO where

• U : H → H is a unitary linear operator

• (∀x = (x(k))1⩽k⩽K ∈ H) B(x) = B1(x
(1))× . . .×BK(x(K)),
with (∀k ∈ {1, . . . ,K}) Bk : Hk → Hk an MMO

⋆ ∂(g ◦ U) is a stationary MMO where

• (∀x = (x(k))1⩽k⩽K ∈ H) g(x) =
∑K

k=1 φk(x
(k)), with (∀k ∈ {1, . . . ,K}) φk ∈ Γ0(R)

• U ∈ RK×K orthogonal

⋆ If A is a stationary MMO, then A−1 as well
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Approximate MMO’s resolvents with NNs

Let H = RN and A : H → 2H be a stationary MMO.
For every compact set S ⊂ H and every ϵ ∈ ]0,+∞[, there exists a NN

Qϵ ∈ NF (H) such that Aϵ = 2(Id +Qϵ

)−1 − Id satisfies:

⋆ For every x ∈ S, ∥JA(x)− JAϵ
(x)∥ ⩽ ϵ

⋆ Let x ∈ H and let y ∈ A(x) be such that x+ y ∈ S. Then

(∃xϵ ∈ H)(∃yϵ ∈ Aϵ(xϵ)) ∥x− xϵ∥ ⩽ ϵ and ∥y − yϵ∥ ⩽ ϵ

Remark:

⋆ Same results hold if A is a convex combination of stationary MMOs

⋆ Due to the firmly nonexpansive condition on the NN, the results are less accurate than standard
universal approximations [Hornik et al., 1989][Leshno et al., 1993]

e.g., guaranteeing arbitrary close approximation to any continuous function with a network
having only one hidden layer
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Taining procedure
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Training procedure

Let D ∈ N∗ be the batch size, and K ∈ N∗ be the number of training iterations
For k = 1, . . . ,K

for d = 1, . . . , D
Select randomly ℓ ∈ {1, . . . , L}
Drawn randomly wd ∼ N (0, 1) and ϱd ∼ U([0, 1])
yd = xℓ + σwd

x̃d = ϱdxℓ + (1− ϱd)J̃θk (yd)
gd = ∇θΦd(θk)

θk+1 = Adam( 1
D

∑D
d=1 gd, θk)

Remarks:
⋆ Use of power method to compute ∥∇∇∇Qθ(x)∥, for a given image x ∈ H

• Necessitate to apply ∇∇∇Qθ(x) and ∇∇∇Qθ(x)
⊤ (use automatic differentiation)

• Due to memory limitations, all our experiments will be performed with 5 iterations of the power
method.
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Drawn randomly wd ∼ N (0, 1) and ϱd ∼ U([0, 1])
yd = xℓ + σwd

x̃d = ϱdxℓ + (1− ϱd)J̃θk (yd)
gd = ∇θΦd(θk)

θk+1 = Adam( 1
D

∑D
d=1 gd, θk)

Remarks:
⋆ GANs (see e.g., [Gulrajani et al., 2017]): Use similar regularization to constrain the gradient norm

of the discriminator

⋆ [Hoffman et al., 2019]: Loss regularized with the Froebenius norm of the Jacobian

⋆ RealSN [Ryu et al., 2019]: Compute the Lipschitz constant of each convolutional layer (with 1
iteration of power method)
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Image deblurring
using forward-backward PnP algorithm
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Inverse problem

Inverse problem: z = Hx+ e

⋆ x ∈ RN original unknown image
⋆ H ∈ RN×N blur operator
⋆ e ∈ RN realization of Gaussian random noise N (0, ν)

⋆ z ∈ RN observations

Blur kernels:

(a) (b) (c) (d) (e) (f) (g) (h) (i) (j)
Datasets:

• Training dataset: 50000 test images from the ImageNet dataset (randomly split in 98% for
training and 2% for validation)

• Grayscale test dataset: BSD68 dataset (and a subsample of 10 images referred as BSD10)

• Colour test dataset: BSD500 test set
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Comparison with other PnP methods: Grayscale images

Setting:
• Deblurring problem: x from BSD10 test set, ν = 10−2, blur 1-8
• Training: λ = 10−5, σ = 9× 10−3

• PnP-FB algorithm: γ = 1.99

Comparison with:
⋆ PnP-FB with different denoiser operators:

• RealSN
• BM3D
• DnCNN

⋆ FB with proximity operators of:

• ℓ1-norm composed with a sparsifying operator consisting in the concatenation of the first
eight Daubechies wavelet bases

• total variation (TV) norm



Learning FNE NNs – remarks FB-PnP-MMO results COIL-sim Learning monotone NNs – remarks

A. Repetti et al. ⋆ Learning Monotone Operators for Computational Imaging ⋆ 10/16

Comparison with other PnP methods: Grayscale images

☛ Evaluate ck = ∥xk − xk−1∥/∥x0∥, for (xk)k∈N generated from PnP-FB

300 600 900

10−3

10−5

10−7

PnP FB iteration n

cn

300 600 900

10−3

10−5

10−7

PnP FB iteration n

cn

300 600 900

10−3

10−5

10−7

PnP FB iteration n

cn

(a) BM3D (b) RealSN (c) Proposed

denoiser
kernel

convergence
(a) (b) (c) (d) (e) (f) (g) (h)

Observation 23.36 22.93 23.43 19.49 23.84 19.85 20.75 20.67
RealSN 26.24 26.25 26.34 25.89 25.08 25.84 24.81 23.92 ✓

proxµℓ1
∥Ψ†·∥1 29.44 29.20 29.31 28.87 30.90 30.81 29.40 29.06 ✓

proxµTV∥·∥TV 29.70 29.35 29.43 29.15 30.67 30.62 29.61 29.23 ✓
DnCNN 29.82 29.24 29.26 28.88 30.84 30.95 29.54 29.17 ✗
BM3D 30.05 29.53 29.93 29.10 31.08 30.78 29.56 29.41 ✗

Proposed 30.86 30.33 30.31 30.14 31.72 31.69 30.42 30.09 ✓
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Comparison with other PnP methods: Color images

Setting: (same as in [Bertocchi et al., 2020])
• Deblurring problem: x from BSD500 test set, with

G. A blur 9, ν = 8× 10−3

M. A blur 8, ν = 10−2

M. B blur 3, ν = 10−2

S blur 10, ν = 10−2

• Training: λ = 10−5, σ = 7× 10−3 for G. A, and σ = 9× 10−3 for M. A, M.B and S
• PnP-FB algorithm: γ = 1.99

Comparison with:
⋆ Variational method from [Bertocchi et al., 2020]

⋆ PnP-PDHG [Meinhardt et al., 2017]

⋆ PnP-FB with BM3D

⋆ PnP-FB with DnCNN
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Comparison with other PnP methods: Color images
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Comparison with other PnP methods: Color images
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Comparison with other PnP methods: Color images
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Simulated COIL data
Setting:

• M = 1089 patterns (121 individual cores × 9 rotations)

• input SNR 30dB

• Use 50 images with geometric patterns, of size N = 377× 377

• Fix ε = 50 for data-fidelity ℓ2 bound

Average results on the 50 images:

υ PSNR (dB) SSIM GPU (sec.) CPU (sec.)
5 37.81(±2.49) 0.698(±0.012) 13.0(±1.6) 70.5(±8.0)
10 37.61(±2.08) 0.687(±0.024) 17.0(±4.3) 94.2(±24.8)
20 36.81(±2.42) 0.672(±0.022) 16.4(±4.9) 92.3(±29.0)

SARA-COIL 30.72(±1.38) 0.544(±0.023) – 98.9(±11.8)
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Simulated COIL data results

Ground truth SARA-COIL PnP – σ = 5 PnP – σ = 10 PnP – σ = 20



Learning FNE NNs – remarks FB-PnP-MMO results COIL-sim Learning monotone NNs – remarks

A. Repetti et al. ⋆ Learning Monotone Operators for Computational Imaging ⋆ 14/16

Learning monotone operators – Remarks
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