# LEARNING APPROACHES FOR SOLVING MONOTONE INCLUSION PROBLEMS IN IMAGING

#### Audrey Repetti<sup>†\*</sup>

Joint work(s) with Younes Belkouchi<sup>‡</sup>, Jean-Christophe Pesquet<sup>‡</sup>, Hugues Talbot<sup>‡</sup>, Matthieu Terris<sup>•</sup>, Yves Wiaux<sup>†</sup>

† Heriot-Watt University – \* Maxwell Institute (Edinburgh, UK) † CentraleSupélec – • INRIA Saclay (France)

Maths4DL workshop – July 2025 – Bath, UK







#### Motivation

- \* FORWARD MODEL:  $y = \mathcal{D}(\Phi \overline{x})$ 
  - $\overline{x} \in \mathbb{R}^N$ : original image
  - $\Phi \colon \mathbb{R}^N \to \mathbb{R}^M$ : linear measurement operator
  - $\mathcal{D} \colon \mathbb{R}^M \to \mathbb{R}^M$ : degradation model (e.g., additive Gaussian noise)

OBJECTIVE: Find an estimate  $\widehat{x}$  of  $\overline{x}$  from y

\* EXAMPLE: Image restoration (e.g., deblurring)







Estimate

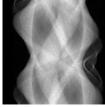
Observation

#### Motivation

- \* FORWARD MODEL:  $y = \mathcal{D}(\Phi \overline{x})$ 
  - $\overline{x} \in \mathbb{R}^N$ : original image
  - $\Phi \colon \mathbb{R}^N o \mathbb{R}^M$ : linear measurement operator
  - $\mathcal{D} \colon \mathbb{R}^M \to \mathbb{R}^M$ : degradation model (e.g., additive Gaussian noise)

OBJECTIVE: Find an estimate  $\widehat{x}$  of  $\overline{x}$  from y

\* EXAMPLE: Medical imaging (CT)



Observation



Estimate

#### Motivation

\* FORWARD MODEL:  $y = \mathcal{D}(\Phi \overline{x})$ 

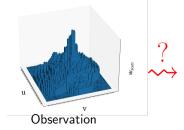
•  $\overline{x} \in \mathbb{R}^N$ : original image

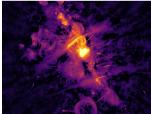
•  $\Phi \colon \mathbb{R}^N \to \mathbb{R}^M$ : linear measurement operator

•  $\mathcal{D} \colon \mathbb{R}^M \to \mathbb{R}^M \colon$  degradation model (e.g., additive Gaussian noise)

OBJECTIVE: Find an estimate  $\widehat{x}$  of  $\overline{x}$  from y

\* EXAMPLE: Radio-interferometric imaging in astronomy





Estimate

## Minimization problem

- \* VARIATIONAL APPROACH: Find  $\widehat{x} \in \text{Argmin } h_u(x) + \lambda g(x)$ 
  - h<sub>u</sub> data fidelity term
  - $\lambda > 0$  and g regularization term (e.g., TV or  $\ell_1$  in a wavelet domain)
  - ullet  $C\subset\mathbb{R}^N$  feasibility set

#### EXAMPLES:

- Gaussian noise:  $h_u(x) = \frac{1}{2} ||\Phi x y||^2$
- Poisson noise:  $h_y(x) = \sum_{m=1}^{M} ([\Phi x]_m \mathsf{z}_m \log([\Phi x]_m))$
- Energy-bounded noise:  $h_y(x) = \iota_{\mathcal{B}_2(y,\epsilon)} (\Phi x) = \begin{cases} 0 & \text{if } \Phi x \in \mathcal{B}_2(y,\epsilon) \\ +\infty & \text{otherwise.} \end{cases}$

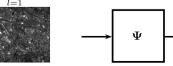
| Introduction<br>○●○○○ | MMOs<br>000    | PnP with FNE NNs | PnP with Monotone NNs | Conclusion<br>00 |
|-----------------------|----------------|------------------|-----------------------|------------------|
| A. Repetti et al.     | Repetti et al. |                  |                       | 2/38             |

#### Minimization problem

- \* VARIATIONAL APPROACH: Find  $\widehat{x} \in \operatorname{Argmin}_{x \in C} h_y(x) + \lambda g(x)$ 
  - $h_u$  data fidelity term
  - $\lambda > 0$  and q regularization term (e.g., TV or  $\ell_1$  in a wavelet domain)
  - $C \subset \mathbb{R}^N$  feasibility set

#### Examples of regularisation terms

- $\star$  Admissibility constraints:  $g(x) = \sum_{l=1}^{L} \iota_{C_l}(x)$
- $\star$   $|\ell_1|$  norm (analysis approach)  $|g(x)| = \sum_{l=1}^{L} |[\mathbf{\Psi}x]_l| = \|\mathbf{\Psi}x\|_1$



Signal x

Frame decomposition operator

200

Frame coefficients

#### Iterative optimisation (proximal) methods

OBJECTIVE: Find 
$$\widehat{x} \in \underset{x \in \mathbb{R}^N}{\operatorname{Argmin}} \ h(x) + g(x)$$
 with  $h \in \Gamma_0(\mathbb{R}^N)$  and  $g \in \Gamma_0(\mathbb{R}^N)$ 

- - Proximity operator of g at  $x \in \mathbb{R}^N$  defined as  $\max_g(x) = \underset{y \in \mathbb{R}^N}{\operatorname{Argmin}} \ g(y) + \frac{1}{2}\|y x\|^2$

OBJECTIVE: Generate a sequence  $(x_k)_{k\in\mathbb{N}}$  converging to  $\widehat{x}$  with  $(\forall k\in\mathbb{N})$   $x_{k+1}=T(x_k)$ 

EXAMPLES: Recursive operator  $T: \mathbb{R}^N \to \mathbb{R}^N$  reminiscent from algorithms such as forward-backward, Douglas-Rachford, forward-backward-forward (Tseng), ADMM, Primal-dual (Chambolle-Pock, Condat-V $\tilde{\mathbf{u}}$ ), etc.

#### Plug-and-play methods

IN A NUTSHELL: Replace some operator(s) in the iterations with a learned version

Example: We want to 
$$\underset{x \in \mathbb{R}^N}{\text{minimize}} \ \frac{1}{2} \|\Phi x - y\|^2 + g(x)$$

FB iterations: 
$$(\forall k \in \mathbb{N})$$
  $x_{k+1} = \operatorname{prox}_{\gamma g} \left( x_k - \gamma \Phi^*(\Phi x_k - y) \right)$ 

Approximated model: Replace  $\Phi$  and  $\Phi^*$  (unknown) by learned approximations  $\widetilde{\Phi}$  and  $\widetilde{\Phi}^*$ :

$$(\forall k \in \mathbb{N}) \quad x_{k+1} = \operatorname{prox}_{\gamma g} \left( x_k - \gamma \widetilde{\Phi}^* (\widetilde{\Phi} x_k - y) \right)$$

More powerful regularizer/denoiser: Replace prox<sub>20</sub> by hand-crafted (e.g., BM3D) or learned (e.g., neural network) regularizer/denoiser  $J: \mathbb{R}^N \to \mathbb{R}^N$ :

$$(\forall k \in \mathbb{N}) \quad x_{k+1} = J(x_k - \gamma \Phi^*(\Phi x_k - y))$$

PnP with Monotone NNs

Conclusion

4/38

PnP with FNF NNs

Introduction

00000 A. Repetti et al.

- Approximated model:  $(\forall k \in \mathbb{N})$   $x_{k+1} = \operatorname{prox}_{\gamma g} \left( x_k \gamma \widetilde{\Phi}^* (\widetilde{\Phi} x_k y) \right)$  More powerful regularizer/denoiser:  $(\forall k \in \mathbb{N})$   $x_{k+1} = J \left( x_k \gamma \Phi^* (\Phi x_k y) \right)$

# How to build reliable PnP methods?

PNP ITERATIONS: Can we use any scheme?

MMOs

NN ARCHITECTURES: Can we use any denoising NN?

### Theoretical understanding?

Asymptotic convergence: Does  $(x_k)_{k\in\mathbb{N}}$  still converge?

CHARACTERISATION OF THE LIMIT POINT: If  $(x_k)_{k\in\mathbb{N}}$  converges to  $\widehat{x}$ , what is  $\widehat{x}$ ?

See, e.g., [Hasannasab et al., 2020], [Terris et al., 2020], [Cohen et al., 2021], [Pesquet et al., 2021], [Hurault et al., 2021], [De Bortorli et al., 2021], ...

5/38

#### Objectives and outline

A. REPETTI et al.

- Adopt a variational/monotone inclusion formulation instead of traditional variational formulation
  - → Use Maximally Monotone Operator (MMO) theory
- Learn monotone operators and resolvent of MMOs to generalize gradients and proximity operators, respectively
  - which uses a regularization during training to penalize the Lipschitz constant of the network
- Use these approaches to design **convergent** plug-and-play algorithms
  - $\sim$  Learn denoiser to replace *resolvent operator* ( $\approx$  proximity operator)
  - $\sim$  Learn forward model to replace *monotone operator* ( $\approx$  gradient operator)

PnP with Monotone NNs

Conclusion

PnP with FNE NNs

Introduction

MMOs

•00

MMO theory

# Maximally Monotone Operators (MMOs)

Let 
$$A \colon \mathcal{H} \to 2^{\mathcal{H}}$$
 be a multivariate operator

• A is monotone if, for every  $(x_1, x_2) \in \mathcal{H}^2$ ,  $u_1 \in Ax_1$  and  $u_2 \in Ax_2$ ,

$$\langle x_1 - x_2 \mid u_1 - u_2 \rangle \geqslant 0$$

- A is maximally monotone if and only if, for every  $(x_1,u_1) \in \mathcal{H}^2$ ,  $u_1 \in Ax_1 \iff (\forall x_2 \in \mathcal{H})(\forall u_2 \in Ax_2)\langle x_1 x_2 \mid u_1 u_2 \rangle \geqslant 0$ 
  - i.e., if there is no monotone operator that properly contains it
- The resolvent of A is  $J_A = (\mathrm{Id} + A)^{-1}$

#### Particular case: Let $q \in \Gamma_0(\mathbb{R}^N)$ .

- $oldsymbol{\partial} g$  is an MMO
- $\operatorname{prox}_q = J_{\partial g}$

| Introduction<br>00000 | MMOs<br>○○●                                                                          | PnP with FNE NNs | PnP with Monotone NNs | Conclusion<br>00 |
|-----------------------|--------------------------------------------------------------------------------------|------------------|-----------------------|------------------|
| A. Repetti et al.     | Repetti et al. $\star$ Learning Monotone Operators for Computational Imaging $\star$ |                  |                       | 8/38             |

# Monotone inclusion problem

VARIATIONAL INCLUSION PROBLEM: Let 
$$h \in \Gamma_0(\mathbb{R}^N)$$
 and  $g \in \Gamma_0(\mathbb{R}^N)$ 

$$0 \in \partial h(\widehat{x}) + \partial g(\widehat{x}) \Rightarrow \widehat{x} \in \text{Argmin} \ h(x) + g(x)$$

VARIATIONAL INCLUSION PROBLEM: Let  $h \in \Gamma_0(\mathbb{R}^N)$  and  $q \in \Gamma_0(\mathbb{R}^N)$ 

$$0 \in \partial h(\widehat{x}) + \partial g(\widehat{x}) \Rightarrow \widehat{x} \in \operatorname{Argmin}_{X} h(x) + g(x)$$

#### Monotone inclusion problem:

Monotone inclusion problem

$$0 \in \partial h(\widehat{x}) + \partial g(\widehat{x})$$
 is a particular case of  $0 \in \partial h(\widehat{x}) + A(\widehat{x})$ , where A is an MMO

#### IDEA: Learn A instead of a

- $\star$  More flexible as  $\partial a$  is a particular case of MMOs
- $\star$  Most of proximal algorithms are derived from MMO theory (e.g., FB, primal-dual Condat-Vũ, Douglas-Rachford, etc.)

EXAMPLE: FB algorithm:  $(\forall k \in \mathbb{N}) \ x_{k+1} = J_{\gamma_k A} (x_k - \gamma_k \nabla h(x_k))$ 

#### Learning firmly nonexpansive NNs







• J.-C. Pesquet, A.R., M. Terris, and Y. Wiaux. Learning maximally monotone operators for image recovery, *SIAM Journal on Imaging Sciences*, 14(3):1206-1237, August 2021.

- PnP for monotone inclusion problems: Learning a resolvent
  - ★ Same principle as PnP from proximal algorithms:
    - Choose any algorithm whose proof is based on MMO theory
    - **2** Replace the resolvent operator  $J_A$  by a learned denoiser  $\widetilde{J}$

# PnP for monotone inclusion problems: Learning a resolvent

- \* Same principle as PnP from proximal algorithms:
  - Choose any algorithm whose proof is based on MMO theory
  - Replace the resolvent operator  $J_A$  by a learned denoiser  $\widetilde{J}$

Let  $(x_k)_{k\in\mathbb{N}}$  be a sequence generated by a PnP algorithm.

- If  $\widetilde{J}$  is firmly nonexpansive, then  $(x_k)_{k\in\mathbb{N}}$  converges to  $\widehat{x}$ .
  - J is  $\mu$ -Lipschitz, with  $\mu > 0$ , if  $(\forall (x_1, x_2) \in \mathcal{H}^2)$   $||J(x_1) J(x_2)|| \leqslant \mu ||x_1 x_2||$
  - If J is 1-Lipschitz, then it is nonexpansive
  - J is firmly nonexpansive if  $(\forall (x_1, x_2) \in \mathcal{H}^2)$   $||J(x_1) J(x_2)||^2 \leqslant \langle x_1 x_2 \mid J(x_1) J(x_2) \rangle$

#### PnP for monotone inclusion problems: Learning a resolvent

- \* Same principle as PnP from proximal algorithms:
  - Choose any algorithm whose proof is based on MMO theory
  - Propose any algorithm whose proof is based on Mino theo Replace the resolvent operator  $J_A$  by a learned denoiser  $\tilde{J}$

Let  $(x_k)_{k\in\mathbb{N}}$  be a sequence generated by a PnP algorithm. • If  $\widetilde{J}$  is firmly nonexpansive, then  $(x_k)_{k\in\mathbb{N}}$  converges to  $\widehat{x}$ .

• For  $\widetilde{J} = \frac{\operatorname{Id} + Q}{2}$ , with Q nonexpansive,  $\exists A \text{ MMO s.t. } 0 \in \partial h(\widehat{x}) + A(\widehat{x})$ .

Let  $A \colon \mathcal{H} \to 2^{\mathcal{H}}$ . The following are equivalent

- ullet A is an MMO.
- $J_A$  is firmly nonexpansive
- $J_A \colon \mathcal{H} \to \mathcal{H} \colon x \mapsto \frac{x + Q(x)}{2}$ , for  $Q \colon \mathcal{H} \to \mathcal{H}$  nonexpansive.

Then  $A = 2(\text{Id} + Q)^{-1} - \text{Id}$ 

#### Learn MMOs?

- Use NNs to approximate the resolvent of an MMO
- $\sim$  Choose  $\widetilde{J} = \frac{\operatorname{Id} + Q}{2}$ , where Q is nonexpansive
- Convergence of PnP (any iteration scheme whose convergence proof is based on MMOs)
- Characterization of the limit point as a solution to a monotone inclusion problem
- Approximation theorem ensuring (stationary) MMOs can be approximated by feedforward NNs
- Training method to ensure NN Q to be nonexpansive

# Jacobian regularization for FNE NNs

- \* NETWORK:  $\widetilde{J}_{\theta} : \mathbb{R}^N \to \mathbb{R}^N$  with learnable parameters  $\theta \in \mathbb{R}^P$  (e.g., convolutional kernels)
- \* TRAINING SET: Pairs of groundtruth/observations  $(\overline{x}_{\ell}, y_{\ell})_{1 \leq \ell \leq L}$ , with  $(\overline{x}_{\ell}, y_{\ell}) \in (\mathbb{R}^{N})^{2}$

Example of denoising network: 
$$(\forall \ell \in \{1, ..., L\})$$
  $y_{\ell} = \overline{x}_{\ell} + \sigma w_{\ell}$ 

where  $\sigma > 0$  and  $w_{\ell}$  realization of standard normal i.i.d. random variable

\* Training minimization problem:

$$\underset{\theta \in \mathbb{R}^P}{\operatorname{minimize}} \ \sum_{\ell=1}^L \|\widetilde{J}_{\theta}(y_\ell) - \overline{x}_\ell\|^2 \quad \text{s.t.} \quad Q_{\theta} = 2\widetilde{J}_{\theta} - \operatorname{Id} \quad \text{is nonexpansive}$$

- \* NETWORK:  $\widetilde{J}_{\theta} \colon \mathbb{R}^N \to \mathbb{R}^N$  with learnable parameters  $\theta \in \mathbb{R}^P$  (e.g., convolutional kernels)
- \* TRAINING SET: Pairs of groundtruth/observations  $(\overline{x}_{\ell}, y_{\ell})_{1 \leq \ell \leq L}$ , with  $(\overline{x}_{\ell}, y_{\ell}) \in (\mathbb{R}^{N})^{2}$

Example of denoising network: 
$$(\forall \ell \in \{1, ..., L\})$$
  $y_{\ell} = \overline{x}_{\ell} + \sigma w_{\ell}$ 

where  $\sigma > 0$  and  $w_{\ell}$  realization of standard normal i.i.d. random variable

\* Training minimization problem:

Jacobian regularization for FNE NNs

$$\underset{\theta \in \mathbb{R}^P}{\operatorname{minimize}} \quad \sum_{\ell=1}^L \|\widetilde{J}_{\theta}(y_{\ell}) - \overline{x}_{\ell}\|^2 \quad \text{s.t.} \quad (\forall x \in \mathbb{R}^N) \ \|\nabla Q_{\theta}(x)\| \leqslant 1$$

#### Jacobian regularization for FNE NNs

- \* NETWORK:  $\widetilde{J}_{\theta} \colon \mathbb{R}^N \to \mathbb{R}^N$  with learnable parameters  $\theta \in \mathbb{R}^P$  (e.g., convolutional kernels)
- TRAINING SET: Pairs of groundtruth/observations  $(\overline{x}_{\ell}, y_{\ell})_{1 \leq \ell \leq L}$ , with  $(\overline{x}_{\ell}, y_{\ell}) \in (\mathbb{R}^N)^2$

Example of denoising network: 
$$(\forall \ell \in \{1, ..., L\})$$
  $y_{\ell} = \overline{x}_{\ell} + \sigma w_{\ell}$ 

where  $\sigma > 0$  and  $w_{\ell}$  realization of standard normal i.i.d. random variable

TRAINING MINIMIZATION PROBLEM:

$$\underset{\theta \in \mathbb{R}^P}{\operatorname{minimize}} \ \sum_{\ell=1}^L \|\widetilde{J}_{\theta}(y_{\ell}) - \overline{x}_{\ell}\|^2 \quad \text{s.t.} \quad (\forall x \in \mathbb{R}^N) \ \|\nabla Q_{\theta}(x)\| \leqslant 1$$



where  $\lambda > 0$ ,  $\varepsilon > 0$ , and  $(\forall \ell \in \{1, \dots, L\})$   $\widetilde{x}_{\ell} = \varrho_{\ell} \overline{x}_{\ell} + (1 - \varrho_{\ell}) \widetilde{J}_{\theta}(y_{\ell})$ , with  $\varrho_{\ell}$  realization of a r.v. with uniform distribution on [0,1]

- \*  $\|\nabla Q_{\theta}(\widetilde{x}_{\ell})\|^2$  computed using Jacobian-vector product in Pytorch and auto-differentiation, within power iterations
- \* Can be solved using, e.g., SGD or Adam...

#### Jacobian regularization for FNE NNs

- \* NETWORK:  $\widetilde{J}_{\theta} \colon \mathbb{R}^N \to \mathbb{R}^N$  with learnable parameters  $\theta \in \mathbb{R}^P$  (e.g., convolutional kernels)
- Training set: Pairs of groundtruth/observations  $(\overline{x}_{\ell}, y_{\ell})_{1 \leq \ell \leq L}$ , with  $(\overline{x}_{\ell}, y_{\ell}) \in (\mathbb{R}^{N})^{2}$

Example of denoising network: 
$$(\forall \ell \in \{1, ..., L\})$$
  $y_{\ell} = \overline{x}_{\ell} + \sigma w_{\ell}$ 

where  $\sigma > 0$  and  $w_{\ell}$  realization of standard normal i.i.d. random variable

TRAINING MINIMIZATION PROBLEM:

# Jacobian regularisation: Training results

- ullet Choose  $\widetilde{J}_{ heta}=rac{\mathsf{Id}+Q_{ heta}}{2}$  to be a denoising DnCNN
- ImageNet test set converted to grayscale images in [0, 255]
- Choose  $\lambda > 0$  to ensure  $Q_{\theta}$  to be 1-Lipschitz

#### ILLUSTRATION: Fix $\sigma = 3$ and vary $\lambda$

| λ                                     | 0     | $5 \times 10^{-7}$ | $1 \times 10^{-6}$ | $5 \times 10^{-6}$ | $1 \times 10^{-5}$ | $4 \times 10^{-5}$ | $1.6 \times 10^{-4}$ | $3.2 \times 10^{-4}$ |
|---------------------------------------|-------|--------------------|--------------------|--------------------|--------------------|--------------------|----------------------|----------------------|
| $\max_{x} \ \nabla Q_{\theta}(x)\ ^2$ | 31.36 | 1.65               | 1.349              | 1.028              | 0.9799             | 0.9449             | 0.9440               | 0.9401               |

$$\lambda \geqslant 10^{-5} \Rightarrow \max_{x} \|\nabla Q_{\theta}(x)\|^{2} \leqslant 1 \Rightarrow \widetilde{J}_{\theta}$$
 firmly nonexpansive

# Jacobian regularisation: Training results

- Choose  $\widetilde{J}_{\theta} = \frac{\operatorname{Id} + Q_{\theta}}{2}$  to be a denoising DnCNN
- ImageNet test set converted to grayscale images in [0, 255]
- Choose  $\lambda > 0$  to ensure  $Q_{\theta}$  to be 1-Lipschitz

ILLUSTRATION: Vary  $\sigma \in \{5, 10, 30\}$ , choose  $\lambda > 0$  such that  $\max_x \|\nabla Q_{\theta}(x)\|^2 \leq 1$ 

| $\sigma$ | $\lambda$ | $\max_{x} \ \nabla Q_{\theta}(x)\ $ | PSNR (dB) |
|----------|-----------|-------------------------------------|-----------|
| 5        | 1e - 03   | 0.9926                              | 36.65     |
| 10       | 5e - 03   | 0.9905                              | 32.12     |
| 20       | 1e-02     | 0.9598                              | 28.40     |

Case of the Primal-dual PnP algorithm for monotone inclusion problems with firmly nonexpansive denoising network

Application to Computational Optical Imaging with a Photonic lantern

C. S. Garcia, M. Larcheveque, S. O'Sullivan, M. Van Waerebeke, R. R. Thomson, A.R., and J.-C. Pesquet. A
primal-dual data-driven method for computational optical imaging with a photonic lantern, PNAS Nexus,
3(4):164, April 2024

- Variational minimization problem: Find  $\widehat{x} \in \underset{\varepsilon \to \mathbb{R}^N}{\operatorname{Argmin}} | \iota_{\mathcal{B}_2(y,\varepsilon)}(\Phi x) + \underline{g(x)}$
- Can be rewritten as a VARIATIONAL INCLUSION PROBLEM:

Find 
$$\widehat{x} \in \mathbb{R}^N$$
 such that  $0 \in \Phi^* N_{\mathcal{B}_2(y,\varepsilon)}(\Phi \widehat{x}) + \frac{\partial g(\widehat{x})}{\partial g(\widehat{x})}$ 

where  $N_S$  denotes the normal cone of some set S defined as

$$N_S(x) = \begin{cases} \{u \in \mathcal{H} \mid (\forall y \in S) \ \langle u \mid y - x \rangle \leqslant 0\}, & \text{if } x \in S, \\ \varnothing, & \text{otherwise.} \end{cases}$$

#### Monotone inclusion problem: Morozov formulation

- Variational minimization problem: Find  $\widehat{x} \in \operatorname{Argmin}_{x \in \mathbb{R}^N} \left[ \iota_{\mathcal{B}_2(y,\varepsilon)}(\Phi x) + g(x) \right]$
- Can be rewritten as a VARIATIONAL INCLUSION PROBLEM:

Find 
$$\widehat{x} \in \mathbb{R}^N$$
 such that  $0 \in \Phi^*N_{\mathcal{B}_2(y,arepsilon)}(\Phi\widehat{x}) + \frac{\partial g(\widehat{x})}{\partial g(\widehat{x})}$ 

where  $N_S$  denotes the normal cone of some set S defined as

$$N_S(x) = \begin{cases} \{u \in \mathcal{H} \mid (\forall y \in S) \, \langle u \mid y - x \rangle \leqslant 0\}, & \text{if } x \in S, \\ \varnothing, & \text{otherwise.} \end{cases}$$

• Particular case of MONOTONE INCLUSION PROBLEM:

Find 
$$\widehat{x} \in \mathbb{R}^N$$
 such that  $0 \in \Phi^*N_{\mathcal{B}_2(y,\varepsilon)}(\Phi \widehat{x}) + A(\widehat{x})$ , where  $A$  is an MMO

- IDEA: Use primal-dual algorithm [Chambolle, Pock, 2011][Condat, 2013][Vũ, 2013]
  - Approximate the resolvent  $J_A$  of A by a FNE NN  $\widetilde{J}_{\theta}$

Let  $(x_0,v_0)\in\mathbb{R}^N imes$ 

Proposed primal-dual PnP method

Let 
$$(x_0, v_0) \in \mathbb{R}^N \times \mathbb{R}^M$$
 and  $(\tau, \sigma) \in ]0, +\infty[^2$  for  $k = 0, 1, \dots$  do 
$$x_{k+1} = \widetilde{J}_\theta \big( x_k - \tau \Phi^* u_k \big)$$
  $\widetilde{u}_k = u_k + \sigma \Phi(2x_{k+1} - x_k)$   $u_{k+1} = \widetilde{u}_k - \sigma \operatorname{prox}_{\sigma^{-1}h} \big( \sigma^{-1} \widetilde{u}_k \big)$  end for

#### CONVERGENCE:

Assume that  $\tau \sigma \|\Phi\|^2 < 1$ , and that  $\widetilde{J}_{\theta} = \frac{\mathsf{Id} + Q_{\theta}}{2}$ , where  $Q_{\theta}$  is a 1-Lipschitz NN.

Let  $\widetilde{A}$  be the MMO equal to  $\widetilde{J}_{a}^{-1} - \mathrm{Id}$ .

Assume that there exists at least a solution  $\widehat{x}$  to the inclusion  $0 \in \Phi^*N_{\mathcal{B}_2(y,\varepsilon)}(\Phi\widehat{x}) + \tau^{-1}\widetilde{A}(\widehat{x})$ 

Then  $(x_k)_{k\in\mathbb{N}}$  converges to a such a solution.

A. Repetti et al. 

\* Learning Monotone Operators for Computational Imaging \*

#### Application to computational optical imaging with a photonic lantern

#### OBJECTIVE:

- Optical fibres used for imaging in-vivo biological processes, e.g., microendoscopy
- Fibre must be stable to movements (e.g., bending)
- Produce accurate imaging (with high spatial resolution)
- Highly compressed observed data

Experimental setup used to acquire the data during the photonic lantern imaging experiments





17/38

Imaging inverse problem [Choudhury et al., 2020]

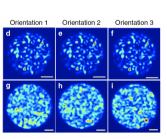
Inverse problem:  $z = \Phi \overline{x} + w$ 

- $\star \ \overline{x} \in \mathbb{R}^N$  is the original unknown image  $(N = 377 \times 377)$
- $\star \ \Phi \in \mathbb{R}^{M \times N}$  is the measurement matrix
  - Each row of  $\Phi$  contains a pattern generated by the fiber
  - $11 \times 11 = 121$  patterns can be generated  $\rightsquigarrow M/N \approx 0.085\%$ + 9 possible rotations of  $40^{\circ}$  (= 1089 patterns)  $\rightsquigarrow M/N \approx 0.77\%$
- $\star w$  is a realization of a random noise assumed to have bounded energy

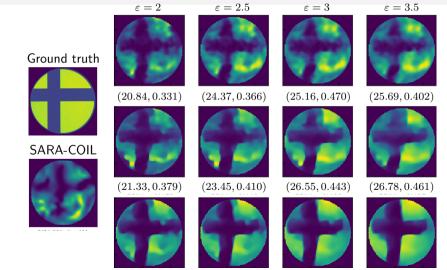
OBJECTIVE: Find an estimate  $\hat{x}$  of  $\overline{x}$  from z

x = x = x

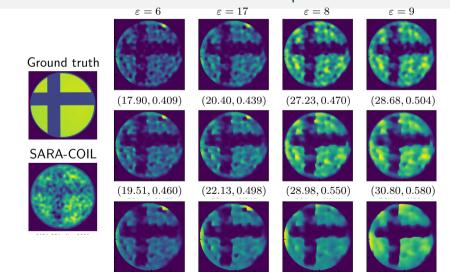
EXAMPLES OF PATTERNS:

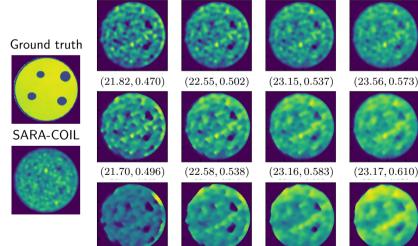


### Experimental COIL data results: cross 121 patterns



## Experimental COIL data results: cross 1089 patterns





| Introduction<br>00000 | MMOs<br>000 | PnP with FNE NNs | PnP with Monotone NNs  •0000000000000 | Conclusion<br>00 |
|-----------------------|-------------|------------------|---------------------------------------|------------------|
| A. Repetti et al.     | * I         | 22/38            |                                       |                  |

#### Learning monotone operators







• Younes Belkouchi, J.-C. Pesquet, A.R., and H. Talbot. Learning truly monotone operators with applications to nonlinear inverse problems, SIAM Journal on Imaging Sciences, 18(1), 735-764, 2025.

PnP for monotone inclusion problems: Learning a monotone operator

- \* Same principle as PnP from proximal algorithms:
  - 1 Choose any algorithm whose proof is based on MMO theory
  - 2 Replace the monotone (continuous) operator A by a learned approximation  $\widetilde{A}$

A. REPETTI et al. 

\* LEARNING MONOTONE OPERATORS FOR COMPUTATIONAL IMAGING \*

23/38

## PnP for monotone inclusion problems: Learning a monotone operator

- \* Same principle as PnP from proximal algorithms:
  - 1 Choose any algorithm whose proof is based on MMO theory
  - 2 Replace the monotone (continuous) operator A by a learned approximation  $\widetilde{A}$

- ✓ Convergence of PnP (any iteration scheme whose convergence proof is based on MMOs)
- Characterization of the limit point as a solution to a monotone inclusion problem
- $\checkmark$  Training method to ensure NN  $\widetilde{A}$  to be monotone

A. Repetti et al. 

★ Learning Monotone Operators for Computational Imaging ★

24/38

## Link between monotone operators and Jacobian properties

Let  $A \colon \mathbb{R}^N \to \mathbb{R}^N$  be Fréchet differentiable, and  $\beta \geqslant 0$  Then we have:

A is 
$$\beta$$
-strongly monotone  $\Leftrightarrow$   $(\forall x \in \mathbb{R}^N)$   $\nabla^s A(x) \succcurlyeq \beta \mathrm{Id}$   $\Leftrightarrow$   $(\forall x \in \mathbb{R}^N)$   $\nabla^s R_A(x) \succcurlyeq (2\beta - 1) \mathrm{Id}$ 

- A is  $\beta$ -strongly monotone , with  $\beta\geqslant 0$ , if  $(\forall (x_1,u_2)\in\operatorname{Graph} A)(\forall (x_2,u_2)\in\operatorname{Graph} A)$   $\langle u_1-u_2\mid x_1-x_2\rangle\geqslant \beta\|x_1-x_2\|^2$
- If  $\beta = 0$ , then A is monotone
- The reflected operator of A if given by  $R_A = 2A \mathrm{Id}$
- The symmetric part of the Jacobian of A if given by  $\nabla^s A = \frac{\nabla A + (\nabla A)^\top}{2}$

## Link between monotone operators and Jacobian properties

Let  $A \colon \mathbb{R}^N \to \mathbb{R}^N$  be Fréchet differentiable, and  $\beta \geqslant 0$  Then we have:

A is 
$$\beta$$
-strongly monotone  $\Leftrightarrow$   $(\forall x \in \mathbb{R}^N)$   $\nabla^s A(x) \succcurlyeq \beta \mathrm{Id}$   $\Leftrightarrow$   $(\forall x \in \mathbb{R}^N)$   $\nabla^s R_A(x) \succcurlyeq (2\beta - 1) \mathrm{Id}$ 

Particular case: A is monotone iff for every  $x \in \mathbb{R}^N$ 

• 
$$\lambda_{\min} \Big( \nabla^s A(x) \Big) \geqslant 0$$
 with  $\nabla^s A = \frac{\nabla^2 A + (\nabla^2 A)^{\top}}{2}$ 

• 
$$\lambda_{\min} (\nabla^s R_A(x)) \geqslant -1$$
 with  $R_A = 2A - \text{Id}$ 

- \* NETWORK:  $\widetilde{A}_{\theta} : \mathbb{R}^N \to \mathbb{R}^N$  with learnable parameters  $\theta \in \mathbb{R}^P$  (e.g., convolutional kernels)
- \* Training set: Pairs of groundtruth/observations  $(\overline{x}_{\ell}, y_{\ell})_{1 \leq \ell \leq L}$ , with  $(\overline{x}_{\ell}, y_{\ell}) \in (\mathbb{R}^{N})^{2}$
- \* Training minimization problem:

$$\min_{\theta \in \mathbb{R}^P} \sum_{\ell=1}^L \|\widetilde{A}_{\theta}(y_\ell) - \overline{x}_\ell\|^2 \quad \text{s.t.} \quad \widetilde{A}_{\theta} \quad \text{is monotone}$$

- \* NETWORK:  $\widetilde{A}_{\theta} : \mathbb{R}^N \to \mathbb{R}^N$  with learnable parameters  $\theta \in \mathbb{R}^P$  (e.g., convolutional kernels)
- \* TRAINING SET: Pairs of groundtruth/observations  $(\overline{x}_{\ell}, y_{\ell})_{1 \leq \ell \leq L}$ , with  $(\overline{x}_{\ell}, y_{\ell}) \in (\mathbb{R}^N)^2$
- \* Training minimization problem:

$$\underset{\theta \in \mathbb{R}^P}{\text{minimize}} \quad \sum_{\ell=1}^L \|\widetilde{A}_{\theta}(y_{\ell}) - \overline{x}_{\ell}\|^2 \quad \text{s.t.} \quad (\forall x \in \mathbb{R}^N) \ \lambda_{\min} (\nabla^s R_{\widetilde{A}_{\theta}}(x)) \geqslant -1$$

- \* NETWORK:  $\widetilde{A}_{\theta} : \mathbb{R}^N \to \mathbb{R}^N$  with learnable parameters  $\theta \in \mathbb{R}^P$  (e.g., convolutional kernels)
- \* Training set: Pairs of groundtruth/observations  $(\overline{x}_{\ell}, y_{\ell})_{1 \leq \ell \leq L}$ , with  $(\overline{x}_{\ell}, y_{\ell}) \in (\mathbb{R}^{N})^{2}$
- \* Training minimization problem:

$$\underset{\theta \in \mathbb{R}^P}{\text{minimize}} \quad \sum_{\ell=1}^L \|\widetilde{A}_{\theta}(y_{\ell}) - \overline{x}_{\ell}\|^2 \quad \text{s.t.} \quad (\forall x \in \mathbb{R}^N) \ \lambda_{\min} (\nabla^s R_{\widetilde{A}_{\theta}}(x)) \geqslant -1$$

In practice one cannot enforce 
$$\lambda_{\min} \left( \nabla^s R_{\widetilde{A}_{\theta}}(x) \right) \geqslant -1$$
 for all  $x \in \mathbb{R}^N$  How to compute  $\lambda_{\min} \left( \nabla^s R_{\widetilde{A}_{\theta}}(x) \right)$ ?

- \* NETWORK:  $\widetilde{A}_{\theta} : \mathbb{R}^{N} \to \mathbb{R}^{N}$  with learnable parameters  $\theta \in \mathbb{R}^{P}$  (e.g., convolutional kernels)
- \* TRAINING SET: Pairs of groundtruth/observations  $(\overline{x}_{\ell}, y_{\ell})_{1 \leq \ell \leq L}$ , with  $(\overline{x}_{\ell}, y_{\ell}) \in (\mathbb{R}^N)^2$
- \* Training minimization problem:

$$\underset{\theta \in \mathbb{R}^P}{\operatorname{minimize}} \quad \sum_{\ell=1}^L \|\widetilde{A}_{\theta}(y_{\ell}) - \overline{x}_{\ell}\|^2 - \zeta \min \left\{ 1 + \lambda_{\min} \left( \nabla^s R_{\widetilde{A}_{\theta}}(\overline{x}_{\ell}) \right), \varepsilon \right\}$$

where  $\zeta > 0$ .  $\varepsilon > 0$ 

$$\star \ \, \lambda_{\min} \big( \nabla^s R_{\widetilde{A}_{\theta}}(\overline{x}_{\ell}) \big) = \varrho(\overline{x}_{\ell}) - \overline{\lambda}_{\max} \Big( \varrho(\overline{x}_{\ell}) \mathrm{Id} \, - \nabla^s R_A(\overline{x}_{\ell}) \Big) \ \, \text{with} \, \, \varrho(x) \geqslant \overline{\lambda}_{\max} \big( \nabla^s R_A(\overline{x}_{\ell}) \big)$$

- \* Use Jacobian-vector product in Pytorch and auto-differentiation, combined with two power iterations
- \* Can be solved using, e.g., SGD or Adam...

Case of the Forward-Backward-Forward PnP algorithm for monotone inclusion problems

Application to learning non-linear model approximations

## Monotone inclusion problem

#### MONOTONE INCLUSION PROBLEM: We want to

Find 
$$\widehat{x} \in \mathbb{R}^N$$
 such that  $0 \in A(\widehat{x}) + \partial h(\widehat{x}) + N_C(\widehat{x})$ 

#### where

- $oldsymbol{C}$  is a closed convex set of  $\mathbb{R}^N$
- $h: \mathbb{R}^N \to \mathbb{R}$  proper lsc convex and continuously differentiable on  $C \subset \operatorname{int}(\operatorname{dom} h)$
- A monotone continuous operator defined on C

PnP with Monotone NNs

Conclusion

#### MONOTONE INCLUSION PROBLEM: We want to

MMOs

Find 
$$\widehat{x} \in \mathbb{R}^N$$
 such that  $0 \in A(\widehat{x}) + \partial h(\widehat{x}) + N_C(\widehat{x})$ 

PnP with FNF NNs

#### where

Introduction

- ullet C is a closed convex set of  $\mathbb{R}^N$
- $h: \mathbb{R}^N \to \mathbb{R}$  proper lsc convex and continuously differentiable on  $C \subset \operatorname{int}(\operatorname{dom} h)$
- A monotone continuous operator defined on C

#### IDEA: • Approximate operator A by a monotone continuous NN $\widehat{A}_{\theta}$ • Use a PnP version of the forward-backward-forward iterations [Tseng, 2000] combined with an Armijo's rule (to avoid cocoercive assumption on $\widetilde{A}_{ heta}$ )

NOTE: Most standard NNs are continuous, especially those that use non-expansive activation functions So we "only" need to take care of the monotony property during training

Let  $m_i \in C$  and  $(a_{ij})_{ij}$  be a conjugate in  $[0, +\infty[$ 

Let 
$$x_0 \in C$$
 and  $(\gamma_k)_{k \in \mathbb{N}}$  be a sequence in  $]0, +\infty[$  for  $k=0,1,\ldots$  do 
$$a_k = \widetilde{A}_{\theta}(x_k) + \nabla h(x_k) \\ z_k = \operatorname{proj}_C(x_k - \gamma_k a_k) \\ x_{k+1} = \operatorname{proj}_C\left(z_k - \gamma_k(\widetilde{A}_{\theta}(z_k) + \nabla h(z_k) - a_k)\right)$$
 end for

ARMIJO-GOLDSTEIN RULE: Let  $\sigma \in ]0, +\infty[$  and  $(\beta, \theta) \in ]0, 1[^2$ , and define  $(\gamma_k = \sigma \beta^{i_k})_{k \in \mathbb{N}}$  where

$$(\forall k \in \mathbb{N}) \quad i_k = \inf \left\{ i \in \mathbb{N} \ \middle| \ \gamma = \sigma \beta^i, \quad \gamma \| \widetilde{A}_{\theta}(z_k) + \nabla h(z_k) - \widetilde{A}_{\theta}(x_k) - \nabla h(x_k) \| \leqslant \theta \| z_k - x_k \| \right\}.$$

Convergence: Let  $\widetilde{A}_{\theta}$  be a monotone continuous NN.

Proposed FBF PnP method

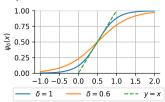
Assume that there exists at least a solution  $\widehat{x}$  to the inclusion  $0 \in \widetilde{A}_{\theta}(\widehat{x}) + \partial h(\widehat{x}) + N_{C}(\widehat{x})$ 

Then  $(x_k)_{k\in\mathbb{N}}$  converges to a such a solution  $\widehat{x}\in\mathrm{dom}\,\widetilde{A}_{\theta}$ .

Learning non-linear model approximations: Application to semi-blind non-linear imaging

## Non-linear inverse problem: $y = F(\overline{x}) + w$

- $\overline{x} \in \mathbb{R}^N$  original unknown image and  $w \in \mathbb{R}^M$  realisation of an additive i.i.d. white Gaussian random variable with zero-mean and standard deviation  $\sigma \geqslant 0$
- $F: \mathbb{R}^N \to \mathbb{R}^N : x \mapsto \frac{1}{J} \sum_{j=1}^J S_{\delta}(L_j x)$ 
  - $S_{\delta} \colon \mathbb{R}^{N} \to \mathbb{R}^{N} \colon x = (x_{i})_{1 \leqslant i \leqslant n} \mapsto (\psi_{\delta}(x_{i}))_{1 \leqslant i \leqslant n}$  is the Hyperbolic tangent saturation function defined as  $\psi_{\delta} \colon \mathbb{R} \to \mathbb{R} \colon x \mapsto \frac{\tanh(\delta(2x-1))+1}{2}$ , with  $\delta > 0$
  - $L_i \in \mathbb{R}^{N \times N}$  are convolution operators, with motion kernels of size  $9 \times 9$  (J=1 or J=5)



\* Learning Monotone Operators for Computational Imaging \*

## Remarks on the considered non-linear model

A. Repetti et al.

Non-linear inverse problem: 
$$y = F(\overline{x}) + w$$
 with  $F: \mathbb{R}^N \to \mathbb{R}^N : x \mapsto \frac{1}{J} \sum_{j=1}^J S_{\delta}(L_j x)$ 

30/38

- There is no guarantee that F is monotone!
- In practice F is difficult to handle, so approximations are considered:
  - Affine approximation  $F^{\mathsf{aff}}(x) = \frac{\delta}{J} \sum_{i=1}^J L_j x + \frac{1-\delta}{2}$  (not necessarily monotone)
  - Linear approximation  $F^{\mathrm{lin}}(x) = rac{\delta}{J} \sum_{j}^{J} L_{j} x$  (not necessarily monotone)
  - $\rightsquigarrow$  Often  $\delta = 1$  as unknown
  - Both approximations necessitate to know  $(L_i)_{1 \le i \le J}$

### Remarks on the considered non-linear model

### Tremarks on the considered non-linear mode

Non-Linear inverse problem:  $y = F(\overline{x}) + w$  with  $F: \mathbb{R}^N \to \mathbb{R}^N : x \mapsto \frac{1}{J} \sum_{j=1}^J S_{\delta}(L_j x)$ 

There is no guarantee that F is monotone!

• In practice F is difficult to handle, so approximations are considered:

• Affine approximation 
$$F^{\rm aff}(x)=rac{\delta}{J}\sum_{i=1}^J L_j x +rac{1-\delta}{2}$$
 (not necessarily monotone)

• Linear approximation 
$$F^{\mathsf{lin}}(x) = \frac{\delta}{J} \sum_{i=1}^J L_j x$$
 (not necessarily monotone)

- If  $\delta$  and/or  $(L_j)_{1 \leqslant j \leqslant J}$  are unknown, one can learn approximations:
  - Linear approximation  $F_{\theta}^{\text{lin}}$  of F (not necessarily monotone)
  - Monotone approximation  $F_{\theta}^{\text{mon}}$  of F (NN with monotone constraint)
  - Non-monotone approximation  $F_{\theta}^{\text{nom}}$  of F (NN without monotone constraint)

Circulation authors and accommod months de

### Simulation setting and compared methods

We consider two monotone inclusion problems.

Direct regularised approach: find  $\widehat{x} \in \mathbb{R}^N$  such that  $0 \in F_{\theta}(\widehat{x}) - y + \varrho \nabla r(\widehat{x}) + N_C(\widehat{x})$ 

with  $\varrho>0$ , and  $r\colon\mathbb{R}^N\to\mathbb{R}$  is a smoothed TV regularisation

 $\longrightarrow$  Use FBF-PnP algorithm with  $h(x) = -\langle y \mid x \rangle$  and  $\widetilde{A}_{\theta} = F_{\theta} + \varrho \nabla r$ 

REMARK:  $F_{\theta}$  should be monotone to ensure convergence of the FBF-PnP iterations

REMARK 2:  $F_{\theta}$  could be either  $F_{\theta}^{\text{lin}}$ ,  $F_{\theta}^{\text{mon}}$ , or  $F_{\theta}^{\text{nom}}$ 

## Simulation setting and compared methods

We consider two monotone inclusion problems.

DIRECT REGULARISED APPROACH: find  $\widehat{x} \in \mathbb{R}^N$  such that  $0 \in F_{\theta}(\widehat{x}) - y + \varrho \nabla r(\widehat{x}) + N_C(\widehat{x})$ 

with  $\varrho>0$ , and  $r\colon\mathbb{R}^N o\mathbb{R}$  is a smoothed TV regularisation

 $\longrightarrow$  Use FBF-PnP algorithm with  $h(x) = -\langle y \mid x \rangle$  and  $\widetilde{A}_{\theta} = F_{\theta} + \rho \nabla r$ 

REMARK:  $F_{\theta}$  should be monotone to ensure convergence of the FBF-PnP iterations

#### LEAST-SQUARES REGULARIZED APPROACH:

find 
$$\widehat{x} \in \mathbb{R}^N$$
 such that  $0 \in F_{\theta}^{\text{lin}^{\top}} F_{\theta}(\widehat{x}) - F_{\theta}^{\text{lin}^{\top}} y + \rho \nabla r(\widehat{x}) + N_C(\widehat{x})$ 

with  $\rho > 0$ , and  $r \colon \mathbb{R}^N \to \mathbb{R}$  is a smoothed TV regularisation

REMARK:  $F_{a}^{\text{lin}} F_{\theta}$  should be monotone to ensure convergence of the FBF-PnP iterations

## Training results: Testing the learned approximations (BSD68)

| Filters      | Noise                            | Model                                                           | $MAE(y, F_{\theta}(\overline{x})) \ (\times 10^{-2})$ | $\min \lambda_{\min} (\nabla^s F_{\theta}(\overline{x})) (\times 10^{-2})$ |
|--------------|----------------------------------|-----------------------------------------------------------------|-------------------------------------------------------|----------------------------------------------------------------------------|
|              |                                  |                                                                 | $\delta=1$ for $S_{\delta}$                           |                                                                            |
|              | $\sigma_{ m train}=0$            | $F_{\theta}^{\mathrm{mon}}$                                     | $1.5658 (\pm 0.58)$                                   | 1.67 > 0                                                                   |
|              |                                  | $F_{	heta}^{	ext{nom}}$                                         | $0.2932 \ (\pm \ 0.11)$                               | -29.99 < 0                                                                 |
|              |                                  | $F_{\theta}^{\mathrm{mon}}$ *                                   | $0.6822 (\pm 0.25)$                                   | 0.69 > 0                                                                   |
| J = 1        |                                  | $F_{m{	heta}}^{\mathrm{lin}}$                                   | $2.1474 (\pm 1.38)$                                   | -24.69 < 0                                                                 |
| <i>3</i> — 1 | $\sigma_{ m train} = 0.01$       | $F_{\theta}^{\mathrm{mon}}$                                     | $1.1575 (\pm 0.42)$                                   | 1.10 > 0                                                                   |
|              |                                  | $F_{	heta}^{	ext{nom}}$                                         | $0.3020 \ (\pm \ 0.11)$                               | -27.72 < 0                                                                 |
|              |                                  | $F_{\theta}^{\mathrm{mon}}$ *                                   | $0.5351 \pm 0.19$                                     | 1.13 > 0                                                                   |
|              |                                  | $F_{	heta}^{\mathrm{lin}}$                                      | $2.1607 (\pm 1.37)$                                   | -25.87 < 0                                                                 |
|              | $\sigma_{ m train}=0$            | $F_{\theta}^{\mathrm{mon}}$                                     | $0.5272 (\pm 0.20)$                                   | 1.18 > 0                                                                   |
|              |                                  | $F_{	heta}^{	ext{nom}} \ \widetilde{F}_{	heta}^{	ext{mon}} \ *$ | $0.2795 \ (\pm \ 0.10)$                               | -22.06 < 0                                                                 |
|              |                                  | $\widetilde{F}_{	heta}^{\mathrm{mon}}$ *                        | $0.6108 \ (\pm \ 0.22)$                               | 1.80 > 0                                                                   |
| J = 5        |                                  | $F_{	heta}^{	ext{lin}}$                                         | $2.1473 (\pm 1.38)$                                   | -13.86 < 0                                                                 |
| 0 – 0        | $\sigma_{\mathrm{train}} = 0.01$ | $F_{\theta}^{\mathrm{mon}}$                                     | $0.9414 (\pm 0.34)$                                   | 1.80 > 0                                                                   |
|              |                                  | $F_{	heta}^{	ext{nom}} \ \widetilde{F}_{	heta}^{	ext{mon}} \ *$ | $0.2714 \ (\pm \ 0.09)$                               | -25.48 < 0                                                                 |
|              |                                  | $\widetilde{F}_{\theta}^{\mathrm{mon}}$ *                       | $0.6591 (\pm 0.25)$                                   | 1.64 > 0                                                                   |
|              |                                  | $F_{\theta}^{\mathrm{lin}}$                                     | $2.1594 (\pm 1.37)$                                   | -16.55 < 0                                                                 |

## Training results: Testing the learned approximations (BSD68)

| Filters      | Noise                            | Model                                                           | $MAE(y, F_{\theta}(\overline{x})) \ (\times 10^{-2})$ | $\min \lambda_{min} (\nabla^s F_{\theta}(\overline{x})) (\times 10^{-2})$ |
|--------------|----------------------------------|-----------------------------------------------------------------|-------------------------------------------------------|---------------------------------------------------------------------------|
|              |                                  |                                                                 | $\delta=0.6$ for $S_{\delta}$                         |                                                                           |
|              | $\sigma_{ m train}=0$            | $F_{\theta}^{\mathrm{mon}}$                                     | $1.2816~(\pm~0.53)$                                   | 1.91 > 0                                                                  |
|              |                                  | $F_{	heta}^{	ext{nom}}$                                         | $0.2376 \ (\pm \ 0.09)$                               | -18.73 < 0                                                                |
|              |                                  | $F_{\theta}^{\mathrm{mon}}$ *                                   | $0.4311 (\pm 0.14)$                                   | 0.37 > 0                                                                  |
| J = 1        |                                  | $F_{\theta}^{\mathrm{lin}}$                                     | $8.2009 (\pm 2.70)$                                   | -42.79 < 0                                                                |
| <i>3</i> — 1 | $\sigma_{\mathrm{train}} = 0.01$ | $F_{\theta}^{\mathrm{mon}}$                                     | $1.1689 (\pm 0.45)$                                   | 1.65 > 0                                                                  |
|              |                                  | $F_{	heta}^{	ext{nom}}$                                         | $0.2275 \ (\pm \ 0.08)$                               | -23.35 < 0                                                                |
|              |                                  | $F_{\theta}^{\mathrm{mon}}$ *                                   | $0.4679 \ (\pm \ 0.17)$                               | 0.54 > 0                                                                  |
|              |                                  | $F_{	heta}^{\mathrm{lin}}$                                      | $8.1993 (\pm 2.69)$                                   | -43.18 < 0                                                                |
|              | $\sigma_{\mathrm{train}} = 0$    | $F_{\theta}^{\mathrm{mon}}$                                     | $0.7720 \ (\pm \ 0.30)$                               | 1.52>0                                                                    |
|              |                                  | $F_{\theta}^{\mathrm{nom}}$                                     | $0.1435 \ (\pm \ 0.05)$                               | -17.38 < 0                                                                |
|              |                                  | $F_{	heta}^{	ext{nom}} \ \widetilde{F}_{	heta}^{	ext{mon}} \ *$ | $0.4327 (\pm 0.14)$                                   | 0.40 > 0                                                                  |
| J = 5        |                                  | $F_{	heta}^{	ext{lin}}$                                         | $8.1920 \ (\pm \ 2.70)$                               | -39.61 < 0                                                                |
| 0 – 0        | $\sigma_{\mathrm{train}} = 0.01$ | $F_{\theta}^{\mathrm{mon}}$                                     | $0.6867 \ (\pm \ 0.25)$                               | 0.66 > 0                                                                  |
|              |                                  | $F_{	heta}^{	ext{nom}} \ \widetilde{F}_{	heta}^{	ext{mon *}}$   | $0.1788\ (\pm\ 0.06)$                                 | -19.04 < 0                                                                |
|              |                                  | $\widetilde{F}_{\theta}^{\mathrm{mon}}$ *                       | $0.4809 (\pm 0.15)$                                   | 0.33 > 0                                                                  |
|              |                                  | $F_{	heta}^{	ext{lin}}$                                         | $8.1969 (\pm 2.70)$                                   | -35.39 < 0                                                                |

## Training results: Illustrations of learned approximations $(J=5, \delta=1)$



$$y = F(\overline{x})$$
 – PSNR = 21.17



 $(\lambda_{\min}, \lambda_{\max}) = (-0.21, 1.01)$ 



 $y_{Flin} = F^{lin}(\overline{x}) - \mathsf{MAE} = 0.037$  $(\lambda_{\min}, \lambda_{\max}) = (-0.09, 1.00)$ 



 $y_{F_{\rho}^{\text{nom}}} = F_{\rho}^{\text{nom}}(\overline{x}) - \text{MAE} = 0.003$   $y_{F_{\rho}^{\text{mon}}} = F_{\rho}^{\text{mon}}(\overline{x}) - \text{MAE} = 0.005$  $(\lambda_{\min}, \lambda_{\max}) = (0.01, 1.00)$ 



 $y_{F^{\text{lin}}} = F_{\theta}^{\text{lin}}(\overline{x}) - \text{MAE} = 0.037$  $(\lambda_{\min}, \lambda_{\max}) = (-0.14, 0.99)$ 



 $(\lambda_{\min}, \lambda_{\max}) = (0.00, 0.92)$ 

## Training results: Illustrations of learned approximations $(J=5,\delta=0.6)$



$$y = F(\overline{x})$$
 – PSNR = 17.33



 $y_{F_{\theta}^{\text{nom}}} = F_{\theta}^{\text{nom}}(\overline{x}) - \text{MAE} = 0.009$  $(\lambda_{\min}, \lambda_{\max}) = (-0.18, 0.63)$ 



 $y_{F^{\text{lin}}} = F^{\text{lin}}(\overline{x}) - \text{MAE} = 0.110$  $(\lambda_{\min}, \lambda_{\max}) = (-0.09, 1.00)$ 



 $y_{F_{\theta}^{\text{mon}}} = F_{\theta}^{\text{mon}}(\overline{x}) - \text{MAE} = 0.009$  $(\lambda_{\min}, \lambda_{\max}) = (0.03, 0.61)$ 



 $y_{F_{\theta}^{\text{lin}}} = F_{\theta}^{\text{lin}}(\overline{x}) - \text{MAE} = 0.111$  $(\lambda_{\min}, \lambda_{\max}) = (-0.35, 1.00)$ 



 $y_{\widetilde{F}_{\theta}^{\text{mon}}} = F_{\theta}(\overline{x}) - \text{MAE} = \mathbf{0.004}$  $(\lambda_{\text{min}}, \lambda_{\text{max}}) = (0.00, 0.56)$ 

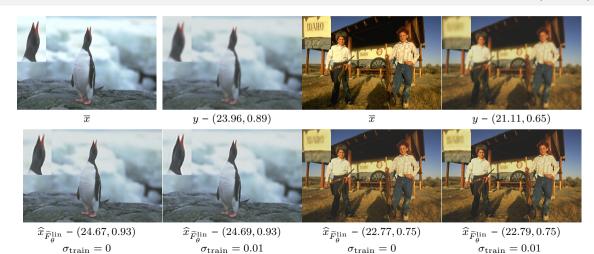
| Introduction<br>00000                                                         | MMOs<br>000 |                            | PnP with FNE NNs    |                  | nP with Monotone NNs<br>oooooooooooooo | Conclusion<br>00            |  |  |  |
|-------------------------------------------------------------------------------|-------------|----------------------------|---------------------|------------------|----------------------------------------|-----------------------------|--|--|--|
| A. Repetti et al.   * Learning Monotone Operators for Computational Imaging * |             |                            |                     |                  |                                        | 34/38                       |  |  |  |
|                                                                               |             |                            |                     |                  |                                        |                             |  |  |  |
| Simulation results: <b>PnP restoration</b> with $\sigma = 0.01$ (BSD68)       |             |                            |                     |                  |                                        |                             |  |  |  |
|                                                                               | Problem     | Operator                   | $\sigma_{ m train}$ | = 0              | $\sigma_{ m train} = 0$                | $\sigma_{\rm train} = 0.01$ |  |  |  |
|                                                                               | 1 TODICITI  | Operator                   | PSNR                | SSIM             | PSNR                                   | SSIM                        |  |  |  |
| $(I \delta) = (1 \ 1)$                                                        | Direct      | $F_{\cdot}^{\mathrm{mon}}$ | $24.56(\pm 3.96)$   | $0.80(\pm 0.11)$ | $24.58(\pm 4.26)$                      | $0.80(\pm 0.11)$            |  |  |  |

|                        | Problem       | Operator                                | $\sigma_{\mathrm{train}} = 0$ |                  | $\sigma_{\mathrm{train}} = 0.01$ |                   |
|------------------------|---------------|-----------------------------------------|-------------------------------|------------------|----------------------------------|-------------------|
|                        |               |                                         | PSNR                          | SSIM             | PSNR                             | SSIM              |
| $(J,\delta) = (1,1)$   | Direct        | $F_{\theta}^{\mathrm{mon}}$             | $24.56(\pm 3.96)$             | $0.80(\pm 0.11)$ | $24.58(\pm 4.26)$                | $0.80(\pm 0.11)$  |
|                        | Least-squares | $\widetilde{F}_{	heta}^{\mathrm{mon}}$  | $26.32(\pm 4.14)$             | $0.85(\pm 0.04)$ | $28.31(\pm 3.66)$                | $0.89(\pm 0.04)$  |
|                        | Least-squares | $\widetilde{F}_{	heta}^{	ext{lin}}$     | $25.59(\pm 3.14)$             | $0.87(\pm 0.07)$ | $25.59(\pm 3.11)$                | $0.87(\pm 0.07)$  |
| $(J,\delta) = (5,1)$   | Direct        | $F_{\theta}^{\mathrm{mon}}$             | $27.46(\pm 4.31)$             | $0.87(\pm 0.08)$ | $26.96(\pm 4.13)$                | $0.86(\pm0.08)$   |
|                        | Least-squares | $\widetilde{F}_{	heta}^{\mathrm{mon}}$  | $28.31(\pm 4.32)$             | $0.89(\pm 0.06)$ | $28.33(\pm 4.33)$                | $0.89(\pm 0.06)$  |
|                        | Least-squares | $\widetilde{F}_{	heta}^{	ext{lin}}$     | $25.21(\pm 3.29)$             | $0.86(\pm0.08)$  | $25.23(\pm 3.32)$                | $0.86(\pm0.08)$   |
| $(J,\delta) = (1,0.6)$ | Direct        | $F_{\theta}^{\mathrm{mon}}$             | $25.17(\pm 3.99)$             | $0.81(\pm 0.10)$ | $25.14(\pm 3.99)$                | $0.81(\pm 0.10)$  |
|                        | Least-squares | $\widetilde{F}_{	heta}^{\mathrm{mon}}$  | $25.33(\pm 3.61)$             | $0.81(\pm 0.07)$ | $26.09(\pm 4.02)$                | $0.83 (\pm 0.07)$ |
|                        | Least-squares | $\widetilde{F}_{	heta}^{	ext{lin}}$     | $18.77(\pm 2.71)$             | $0.77(\pm 0.12)$ | $18.77(\pm 2.71)$                | $0.77(\pm 0.12)$  |
| $(J,\delta) = (5,0.6)$ | Direct        | $F_{\theta}^{\mathrm{mon}}$             | $26.43(\pm 4.23)$             | $0.84(\pm 0.09)$ | $26.63(\pm 4.32)$                | $0.84(\pm 0.09)$  |
|                        | Least-squares | $\widetilde{F}_{\theta}^{\mathrm{mon}}$ | $24.75(\pm 4.33)$             | $0.77(\pm 0.13)$ | $24.73(\pm 4.32)$                | $0.77(\pm 0.13)$  |
|                        | Least-squares | $\widetilde{F}_{	heta}^{	ext{lin}}$     | $18.40(\pm 2.74)$             | $0.72(\pm 0.14)$ | $18.40(\pm 2.74)$                | $0.72(\pm 0.14)$  |

A. Repetti et al. 

\* Learning Monotone Operators for Computational Imaging \* 35/38

## Simulation results: **PnP restoration** with $\sigma=0.01$ , J=5, $\delta=1$ (visual)

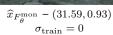


A. Repetti et al. 
\* Learning Monotone Operators for Computational Imaging \*

Simulation results: **PnP restoration** with  $\sigma = 0.01$ , J = 5,  $\delta = 1$  (visual)







 $\widehat{x}_{F_{\theta}^{\text{mon}}} - (30.98, 0.93)$   $\sigma_{\text{train}} = 0.01$ 

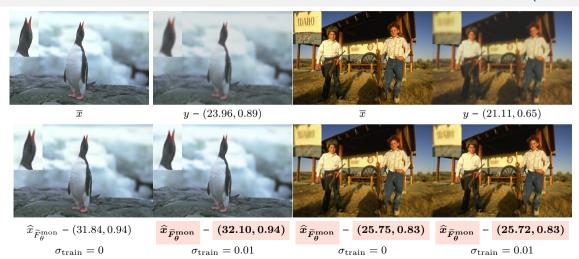


$$\widehat{x}_{F_{\theta}^{\text{mon}}} - (24.67, 0.80)$$
 $\sigma_{\text{train}} = 0.01$ 

35/38

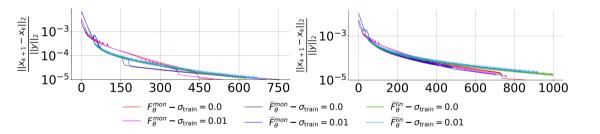
0000 00000000000 00000000000000 00 A. Repetti *et al.* ★ Learning Monotone Operators for Computational Imaging ★ 35/38

## Simulation results: **PnP restoration** with $\sigma = 0.01$ , J = 5, $\delta = 1$ (visual)

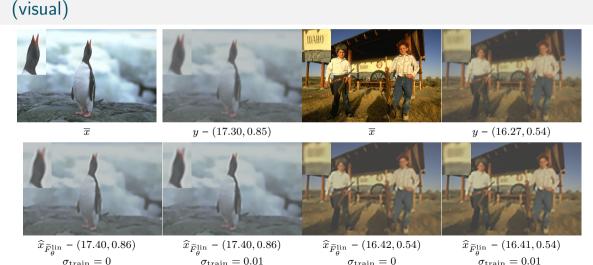


A. Repetti et al. \* Learning Monotone Operators for Computational Imaging \*

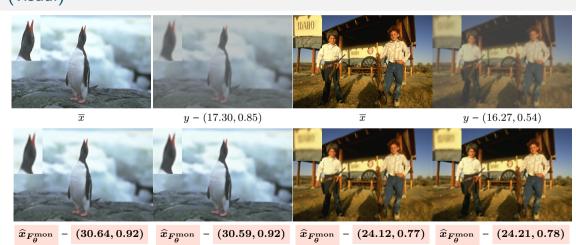
## Simulation results: **PnP restoration** with $\sigma = 0.01$ , J = 5, $\delta = 1$ (visual)



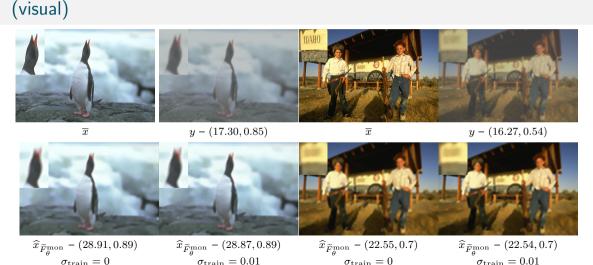
## Simulation results: **PnP restoration** with $\sigma=0.01,\ J=5,\ \delta=0.6$



# Simulation results: **PnP restoration** with $\sigma=0.01,\ J=5,\ \delta=0.6$ (visual)



## Simulation results: **PnP restoration** with $\sigma = 0.01$ , J = 5, $\delta = 0.6$



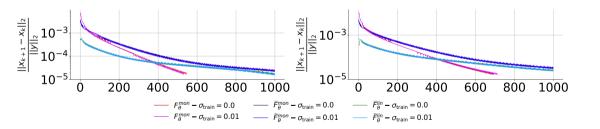
 $\sigma_{\text{train}} = 0$ 

36/38

A. Repetti et al. 

\* Learning Monotone Operators for Computational Imaging \*

# Simulation results: PnP restoration with $\sigma=0.01,\ J=5,\ \delta=0.6$ (visual)



#### Conclusion

- \* Plug-and-play algorithms with FNE NNs and monotone NNs
  - Use any proximal algorithm whose proof holds for MMOs
  - Ensures convergence of the iterates
  - Characterisation of the limit point as solution to monotone inclusion problem
- Training methods for learning FNE NNs and monotone NNs
  - Use Jacobian-vector product in Pytorch and auto-differentiation
  - Combine with power iterations to compute eigenvalues
- Use monotone learning method to learn optimal maps?
- Other algorithms?

#### Thank you for your attention

- > J.-C. Pesquet, A. Repetti, M. Terris, and Y. Wiaux. Learning maximally monotone operators for image recovery, SIAM Journal on Imaging Sciences, 14(3):1206-1237, August 2021.
- C. S. Garcia, M. Larcheveque, S. O'Sullivan, M. Van Waerebeke, R. R. Thomson, A. Repetti, and J.-C. Pesquet. A primal-dual data-driven method for computational optical imaging with a photonic lantern, PNAS Nexus, 3(4):164, April 2024.

Younes Belkouchi, J.-C. Pesquet, A. Repetti, and H. Talbot. Learning truly monotone operators with applications to nonlinear inverse problems, SIAM Journal on Imaging Sciences, 18(1), 735-764, 2025.

COIL-sim

Learning monotone NNs - remarks

FB-PnP-MMO results

Learning FNE NNs – remarks

Approximating the resolvent of an MMO

A. Repetti et al. \* Learning Monotone Operators for Computational Imaging \*

#### Feedforward neural networks

Let  $(\mathcal{H}_m)_{0 \le m \le M}$  be real Hilbert spaces such that  $\mathcal{H}_0 = \mathcal{H}_M = \mathcal{H}$ .

A feedforward NN having M layer and both input and outure in  $\mathcal{H}$  can be seen as a composition of operators:

$$Q = T_M \cdots T_1$$

where  $(\forall m \in \{1, \dots, M\})$   $T_m: \mathcal{H}_{m-1} \to \mathcal{H}_m: x \mapsto R_m(W_m x + b_m)$ .

For each layer  $m \in \{1, \ldots, M\}$ :

- $R_m: \mathcal{H}_m \to \mathcal{H}_m$  is a nonlinear activation operator
- $W_m:\mathcal{H}_{m-1}\to\mathcal{H}_m$  is a bounded linear operator corresponding to the weights of the network
- $b_m \in \mathcal{H}_m$  is a bias parameter vector

### Feedforward neural networks

Let  $(\mathcal{H}_m)_{0 \leqslant m \leqslant M}$  be real Hilbert spaces such that  $\mathcal{H}_0 = \mathcal{H}_M = \mathcal{H}$ .

A feedforward NN having M layer and both input and ouput in  ${\mathcal H}$  can be seen as a composition of operators:

$$Q = T_M \cdots T_1$$

where  $(\forall m \in \{1, ..., M\})$   $T_m : \mathcal{H}_{m-1} \to \mathcal{H}_m : x \mapsto R_m(W_m x + b_m).$ 

#### NOTATION: $\mathcal{N}_{\mathcal{F}}(\mathbb{R}^N)$ denotes the class of **nonexpansive feedforward NNs**

- with inputs and outputs in  $\mathbb{R}^N$
- ullet built from a given dictionary  ${\cal F}$  of activation operators
- $\bullet$   $\ensuremath{\mathcal{F}}$  contains the identity operator, and the sorting operator performed on blocks of size 2

In other words, a network in  $\mathcal{N}_{\mathcal{F}}(\mathbb{R}^N)$  can be linear, or it can be built using max-pooling with blocksize 2 and any other kind of activation function provided that the resulting structure is 1-Lipschitz.

## Stationary MMOs

Let  $(\mathcal{H}_k)_{1 \leq k \leq K}$  be real Hilbert spaces.

An operator A defined on the product space space  $\mathcal{H} = \mathcal{H}_1 \times \cdots \times \mathcal{H}_K$  is a stationary MMO if

its resolvent 
$$J_A\colon \mathcal{H} o \mathcal{H}$$
 satisfies

$$(\forall k\in\{1,\ldots,K\})\ (\exists\,\Pi_k\in\mathcal{B}(\mathcal{H},\mathcal{H}_k)\ (\exists\,\Omega_k\in\mathcal{S}_+(\mathcal{H})\ \text{such that}$$

$$\left(\forall (x,y)\in \mathcal{H}^2\right)\quad \|\Pi_k\big(2J_A(x)-x-2J_A(y)+y\big)\|^2\leqslant \langle x-y\mid \Omega_k(x-y)\rangle$$
 with

 $\sum_{k=1}^K \Pi_k^* \, \Pi_k = ext{Id} \, ext{ and } \left\| \, \sum_{k=1}^K \Omega_k 
ight\| \leqslant 1$ 

REMARK: If A is a stationary MMO, then it is an MMO

 $\mathcal{B}(\mathcal{H},\mathcal{H}_k)$  denotes bounded linear operators from  $\mathcal{H}$  to  $\mathcal{H}_k$ 

 $\mathcal{S}_{+}(\mathcal{H})$  denotes self-adjoint nonnegative operators from  $\mathcal{H}$  to  $\mathcal{H}$ 

4/16

## Stationary MMOs: Examples

000€000 A. Repetti *et al.* 

- $\star A = U^*BU$  is a stationary MMO where
  - $U \colon \mathcal{H} \to \mathcal{H}$  is a unitary linear operator
  - $(\forall x = (x^{(k)})_{1 \leqslant k \leqslant K} \in \mathcal{H})$   $B(x) = B_1(x^{(1)}) \times \ldots \times B_K(x^{(K)}),$  with  $(\forall k \in \{1, \ldots, K\})$   $B_k \colon \mathcal{H}_k \to \mathcal{H}_k$  an MMO
- $\star \ \partial(g \circ U)$  is a stationary MMO where
  - $(\forall x = (x^{(k)})_{1 \leqslant k \leqslant K} \in \mathcal{H})$   $g(x) = \sum_{k=1}^K \varphi_k(x^{(k)})$ , with  $(\forall k \in \{1, \dots, K\})$   $\varphi_k \in \Gamma_0(\mathbb{R})$
  - $U \in \mathbb{R}^{K \times K}$  orthogonal
- \* If A is a stationary MMO, then  $A^{-1}$  as well

### Approximate MMO's resolvents with NNs

Let  $\mathcal{H} = \mathbb{R}^N$  and  $A \colon \mathcal{H} \to 2^{\mathcal{H}}$  be a stationary MMO.

For every compact set  $S \subset \mathcal{H}$  and every  $\epsilon \in ]0, +\infty[$ , there exists a NN

$$Q_{\epsilon} \in \mathcal{N}_{\mathcal{F}}(\mathcal{H})$$
 such that  $A_{\epsilon} = 2(\mathrm{Id} + Q_{\epsilon})^{-1} - \mathrm{Id}$  satisfies:

- $\star$  For every  $x \in S$ ,  $||J_A(x) J_{A_A}(x)|| \leq \epsilon$
- $\star$  Let  $x \in \mathcal{H}$  and let  $y \in A(x)$  be such that  $x + y \in S$ . Then

$$(\exists x_{\epsilon} \in \mathcal{H})(\exists y_{\epsilon} \in A_{\epsilon}(x_{\epsilon})) \quad \|x - x_{\epsilon}\| \leqslant \epsilon \text{ and } \|y - y_{\epsilon}\| \leqslant \epsilon$$

Approximate MMO's resolvents with NNs

Let  $\mathcal{H} = \mathbb{R}^N$  and  $A \colon \mathcal{H} \to 2^{\mathcal{H}}$  be a stationary MMO.

For every compact set  $S \subset \mathcal{H}$  and every  $\epsilon \in ]0, +\infty[$ , there exists a NN

$$Q_{\epsilon} \in \mathcal{N}_{\mathcal{F}}(\mathcal{H})$$
 such that  $A_{\epsilon} = 2(\operatorname{Id} + Q_{\epsilon})^{-1} - \operatorname{Id}$  satisfies:  
 $\star$  For every  $x \in S$ ,  $\|J_A(x) - J_{A_{\epsilon}}(x)\| \le \epsilon$ 

★ Let  $x \in \mathcal{H}$  and let  $y \in A(x)$  be such that  $x + y \in S$ . Then

$$(\exists x_{\epsilon} \in \mathcal{H})(\exists y_{\epsilon} \in A_{\epsilon}(x_{\epsilon})) \quad \|x - x_{\epsilon}\| \leqslant \epsilon \text{ and } \|y - y_{\epsilon}\| \leqslant \epsilon$$

#### REMARK:

0000000

- $\star$  Same results hold if A is a convex combination of stationary MMOs
- \* Due to the firmly nonexpansive condition on the NN, the results are less accurate than standard universal approximations [Hornik et al., 1989][Leshno et al., 1993]

e.g., guaranteeing arbitrary close approximation to any continuous function with a network having only one hidden layer

COIL-sim

Learning monotone NNs - remarks

FB-PnP-MMO results

Learning FNE NNs – remarks ○○○○○●○

Taining procedure

# Training procedure

```
Let D \in \mathbb{N}^* be the batch size, and K \in \mathbb{N}^* be the number of training iterations
For k = 1, \ldots, K
     for d = 1, \ldots, D
          Select randomly \ell \in \{1, \ldots, L\}
          Drawn randomly w_d \sim \mathcal{N}(0,1) and \rho_d \sim \mathcal{U}([0,1])
         y_d = \overline{x}_\ell + \sigma w_d
       \widetilde{x}_d = \varrho_d \overline{x}_\ell + (1 - \varrho_d) \widetilde{J}_{\theta_L}(y_d)
     \begin{bmatrix} g_d = \nabla_{\theta} \Phi_d(\theta_k) \\ \theta_{k+1} = \mathsf{Adam}(\frac{1}{D} \sum_{d=1}^{D} g_d, \theta_k) \end{bmatrix}
```

#### REMARKS:

000000 A. Repetti et al.

- \* Use of power method to compute  $\|\nabla Q_{\theta}(x)\|$ , for a given image  $x \in \mathcal{H}$ 
  - Necessitate to apply  $\nabla Q_{\theta}(x)$  and  $\nabla Q_{\theta}(x)^{\top}$  (use automatic differentiation)
  - Due to memory limitations, all our experiments will be performed with 5 iterations of the power method.

COIL-sim

Learning monotone NNs - remarks

# Training procedure

For  $k = 1, \ldots, K$ 

Learning FNE NNs - remarks

```
\begin{cases} \text{for } d=1,\ldots,D \\ \text{Select randomly } \ell \in \{1,\ldots,L\} \\ \text{Drawn randomly } w_d \sim \mathcal{N}(0,1) \text{ and } \varrho_d \sim \mathcal{U}([0,1]) \\ y_d = \overline{x}_\ell + \sigma w_d \\ \widetilde{x}_d = \varrho_d \overline{x}_\ell + (1-\varrho_d) \widetilde{J}_{\theta_k}(y_d) \\ g_d = \nabla_\theta \Phi_d(\theta_k) \\ \theta_{k+1} = \operatorname{Adam}(\frac{1}{D} \sum_{d=1}^D g_d,\theta_k) \end{cases}
\text{REMARKS:}
```

\* GANs (see e.g., [Gulrajani et al., 2017]): Use similar regularization to constrain the gradient norm

### of the discriminator

FR-PnP-MMO results

Let  $D \in \mathbb{N}^*$  be the batch size, and  $K \in \mathbb{N}^*$  be the number of training iterations

- \* [Hoffman et al., 2019]: Loss regularized with the Froebenius norm of the Jacobian
- \* RealSN [Ryu et al., 2019]: Compute the Lipschitz constant of each convolutional layer (with 1 iteration of power method)

COIL-sim

Learning monotone NNs - remarks

FB-PnP-MMO results

•000

Learning FNE NNs – remarks

Image deblurring using forward-backward PnP algorithm

# Inverse problem

#### Inverse problem: $z = H\overline{x} + e$

- $\star \ \overline{x} \in \mathbb{R}^N$  original unknown image
- $\star H \in \mathbb{R}^{N \times N}$  blur operator
- $\star$   $e \in \mathbb{R}^N$  realization of Gaussian random noise  $\mathcal{N}(0, \nu)$
- $\star \ z \in \mathbb{R}^N$  observations

#### Blur Kernels:





















#### DATASETS:

- Training dataset: 50000 test images from the ImageNet dataset (randomly split in 98% for training and 2% for validation)
- Grayscale test dataset: BSD68 dataset (and a subsample of 10 images referred as BSD10)
- Colour test dataset: BSD500 test set

### Comparison with other PnP methods: Grayscale images

#### SETTING:

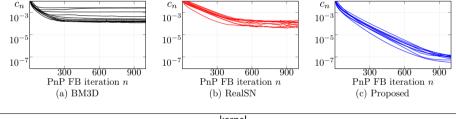
- Deblurring problem:  $\overline{x}$  from BSD10 test set,  $\nu = 10^{-2}$ , blur 1-8
- Training:  $\lambda = 10^{-5}$ ,  $\sigma = 9 \times 10^{-3}$
- PnP-FB algorithm:  $\gamma = 1.99$

#### Comparison with:

- \* PnP-FB with different denoiser operators:
  - RealSN
    - BM3D
    - DnCNN
- \* FB with proximity operators of:
  - $\ell_1$ -norm composed with a sparsifying operator consisting in the concatenation of the first eight Daubechies wavelet bases
  - total variation (TV) norm

### Comparison with other PnP methods: Grayscale images

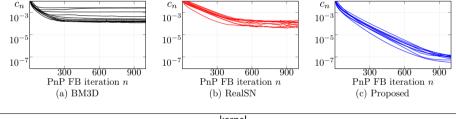
• Evaluate  $c_k = \|x_k - x_{k-1}\|/\|x_0\|$ , for  $(x_k)_{k \in \mathbb{N}}$  generated from PnP-FB



| denoiser                                         | kernel |       |       |       |       |       | convergence |       |             |
|--------------------------------------------------|--------|-------|-------|-------|-------|-------|-------------|-------|-------------|
|                                                  | (a)    | (b)   | (c)   | (d)   | (e)   | (f)   | (g)         | (h)   | convergence |
| Observation                                      | 23.36  | 22.93 | 23.43 | 19.49 | 23.84 | 19.85 | 20.75       | 20.67 |             |
| RealSN                                           | 26.24  | 26.25 | 26.34 | 25.89 | 25.08 | 25.84 | 24.81       | 23.92 | ✓           |
| $prox_{\mu_{\ell_1}  \ \Psi^\dagger \cdot \ _1}$ | 29.44  | 29.20 | 29.31 | 28.87 | 30.90 | 30.81 | 29.40       | 29.06 | ✓           |
| $prox_{\mu_{TV}\ \cdot\ _{TV}}$                  | 29.70  | 29.35 | 29.43 | 29.15 | 30.67 | 30.62 | 29.61       | 29.23 | ✓           |
| DnCNN                                            | 29.82  | 29.24 | 29.26 | 28.88 | 30.84 | 30.95 | 29.54       | 29.17 | ×           |
| BM3D                                             | 30.05  | 29.53 | 29.93 | 29.10 | 31.08 | 30.78 | 29.56       | 29.41 | ×           |
| Proposed                                         | 30.86  | 30.33 | 30.31 | 30.14 | 31.72 | 31.69 | 30.42       | 30.09 | ✓           |

### Comparison with other PnP methods: Grayscale images

• Evaluate  $c_k = \|x_k - x_{k-1}\|/\|x_0\|$ , for  $(x_k)_{k \in \mathbb{N}}$  generated from PnP-FB



| denoiser                                         | kernel |       |       |       |       |       | convergence |       |             |
|--------------------------------------------------|--------|-------|-------|-------|-------|-------|-------------|-------|-------------|
|                                                  | (a)    | (b)   | (c)   | (d)   | (e)   | (f)   | (g)         | (h)   | convergence |
| Observation                                      | 23.36  | 22.93 | 23.43 | 19.49 | 23.84 | 19.85 | 20.75       | 20.67 |             |
| RealSN                                           | 26.24  | 26.25 | 26.34 | 25.89 | 25.08 | 25.84 | 24.81       | 23.92 | ✓           |
| $prox_{\mu_{\ell_1}  \ \Psi^\dagger \cdot \ _1}$ | 29.44  | 29.20 | 29.31 | 28.87 | 30.90 | 30.81 | 29.40       | 29.06 | ✓           |
| $prox_{\mu_{TV}\ \cdot\ _{TV}}$                  | 29.70  | 29.35 | 29.43 | 29.15 | 30.67 | 30.62 | 29.61       | 29.23 | ✓           |
| DnCNN                                            | 29.82  | 29.24 | 29.26 | 28.88 | 30.84 | 30.95 | 29.54       | 29.17 | ×           |
| BM3D                                             | 30.05  | 29.53 | 29.93 | 29.10 | 31.08 | 30.78 | 29.56       | 29.41 | ×           |
| Proposed                                         | 30.86  | 30.33 | 30.31 | 30.14 | 31.72 | 31.69 | 30.42       | 30.09 | ✓           |

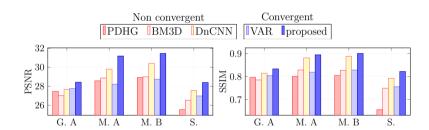
# Comparison with other PnP methods: Color images

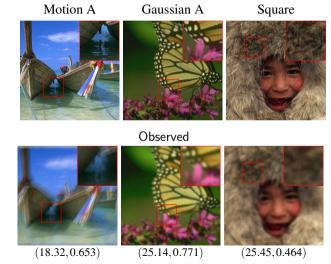
#### SETTING: (same as in [Bertocchi et al., 2020])

- Deblurring problem:  $\overline{x}$  from BSD500 test set, with
- **G.** A blur 9.  $\nu = 8 \times 10^{-3}$
- M. A blur 8.  $\nu = 10^{-2}$
- M. B blur 3,  $\nu = 10^{-2}$ 
  - S blur 10.  $\nu = 10^{-2}$
- Training:  $\lambda = 10^{-5}$ ,  $\sigma = 7 \times 10^{-3}$  for G. A, and  $\sigma = 9 \times 10^{-3}$  for M. A, M.B and S
- PnP-FB algorithm:  $\gamma = 1.99$

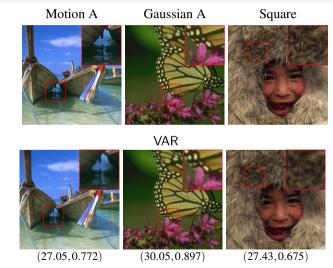
#### COMPARISON WITH:

- \* Variational method from [Bertocchi et al., 2020]
- \* PnP-PDHG [Meinhardt et al., 2017]
- ⋆ PnP-FB with BM3D
- ⋆ PnP-FB with DnCNN

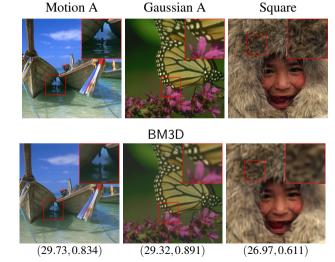




A. Repetti et al. \* Learning Monotone Operators for Computational Imaging \*



A DEARWING MOROTORE OF ERATORS FOR COMMUNICATIONAL IMAGING A

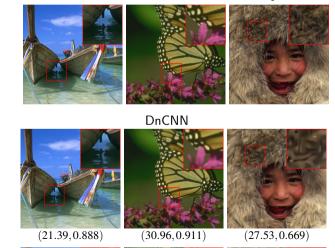


Gaussian A

Square

# Comparison with other PnP methods: Color images

Motion A

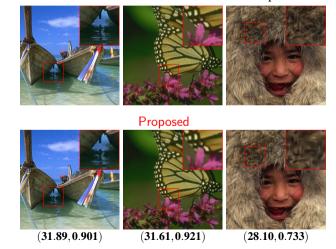


Gaussian A

Square

### Comparison with other PnP methods: Color images

Motion A



# Simulated COIL data

### SETTING:

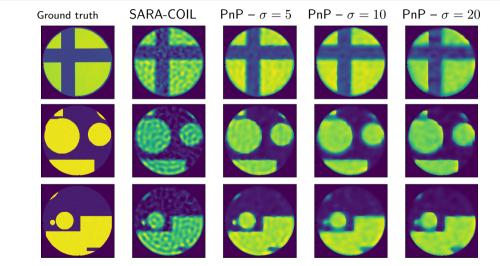
- M=1089 patterns (121 individual cores  $\times$  9 rotations)
- input SNR 30dB
- Use 50 images with geometric patterns, of size  $N=377\times377$
- Fix  $\varepsilon = 50$  for data-fidelity  $\ell_2$  bound

#### AVERAGE RESULTS ON THE 50 IMAGES:

| v       | PSNR (dB)            | SSIM               | GPU (sec.)      | CPU (sec.)       |
|---------|----------------------|--------------------|-----------------|------------------|
| 5       | $37.81(\pm 2.49)$    | $0.698(\pm 0.012)$ | $13.0(\pm 1.6)$ | $70.5(\pm 8.0)$  |
| 10      | $37.61(\pm 2.08)$    | $0.687(\pm 0.024)$ | $17.0(\pm 4.3)$ | $94.2(\pm 24.8)$ |
| 20      | $36.81(\pm 2.42)$    | $0.672(\pm 0.022)$ | $16.4(\pm 4.9)$ | $92.3(\pm 29.0)$ |
| SARA-CO | IL $30.72(\pm 1.38)$ | $0.544(\pm0.023)$  | _               | $98.9(\pm 11.8)$ |

13/16

### Simulated COIL data results



COIL-sim

Learning monotone NNs - remarks

•00

FB-PnP-MMO results

Learning FNE NNs – remarks

Learning monotone operators – Remarks

15/16

#### **Algorithm 3.2** Training a monotone network $F_{\theta}$

```
1: Input:
```

2: ξ ← 0

5:

10:

11:

12:

13:

14:

•  $F_{\theta}$ ,  $N_{\text{enochs}}$ , B,  $\Delta \xi > 0$ 

 $\widetilde{x}_{h_0} \leftarrow \nu x_{h_0} + (1-\nu) u_{h_0}$ 

 $q_{\mathbb{R}}(\theta) \in \partial \ell_{\mathbb{R}}(\theta)$ 

 $\theta \leftarrow \mathcal{O}(\theta, q_{\mathbb{R}}(\theta))$ 

. L. P. Dtrain

3: for  $i = 1, \ldots, N_{\text{enochs}}$  do

• Optimizer step:  $\mathcal{O}: (\theta, q) \mapsto \theta^+$ 

for each batch  $\mathbb{B} = \{(x_b, y_b)\}_{1 \le b \le B} \subset \mathbb{D}_{\text{train}}$  of size B do

 $\ell_{\mathbb{B}} \colon \vartheta \mapsto \frac{1}{R} \sum_{b=1}^{\hat{B}} \mathcal{L}(F_{\vartheta}(x_b), y_b) + \xi \, \mathcal{P}(\vartheta, \widetilde{x}_{b_0})$ 

Gradient computation and optimizer step:

▷ e.g., Adam, SGD, etc.

▷ Loss, penalization and training set

> Training parameters

Computational graph related to the loss and the penalization:

 $b_0 \leftarrow \text{realization of discrete random uniform variable in } \{1, \dots, B\}$  $\nu \leftarrow$  realization of random uniform variable in [0, 1]

▷ Use Algorithm 3.1

 $\triangleright$  Increase penalization parameter

 $\xi \leftarrow \xi + \Delta \xi$ 

end for

15: end for

16: Output:  $F_{\theta}$ 

17: return  $\widehat{\rho} - \widehat{\chi} \simeq \lambda_{\min} (J_{R_{F_*}}^s(x))$ 

16/16