LEARNING APPROACHES FOR SOLVING MONOTONE INCLUSION PROBLEMS IN IMAGING

Audrey Repetti^{†*}

Joint work(s) with Younes Belkouchi[‡], Jean-Christophe Pesquet[‡], Hugues Talbot[‡], Matthieu Terris[•], Yves Wiaux[†]

† Heriot-Watt University – * Maxwell Institute (Edinburgh, UK) † CentraleSupélec – • INRIA Saclay (France)

Maths4DL workshop – July 2025 – Bath, UK

Motivation

- * FORWARD MODEL: $y = \mathcal{D}(\Phi \overline{x})$
 - $\overline{x} \in \mathbb{R}^N$: original image
 - $\Phi \colon \mathbb{R}^N \to \mathbb{R}^M$: linear measurement operator
 - $\mathcal{D} \colon \mathbb{R}^M \to \mathbb{R}^M$: degradation model (e.g., additive Gaussian noise)

OBJECTIVE: Find an estimate \widehat{x} of \overline{x} from y

* EXAMPLE: Image restoration (e.g., deblurring)

Estimate

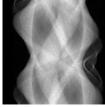
Observation

Motivation

- * FORWARD MODEL: $y = \mathcal{D}(\Phi \overline{x})$
 - $\overline{x} \in \mathbb{R}^N$: original image
 - $\Phi \colon \mathbb{R}^N o \mathbb{R}^M$: linear measurement operator
 - $\mathcal{D} \colon \mathbb{R}^M \to \mathbb{R}^M$: degradation model (e.g., additive Gaussian noise)

OBJECTIVE: Find an estimate \widehat{x} of \overline{x} from y

* EXAMPLE: Medical imaging (CT)



Observation

Estimate

Motivation

* FORWARD MODEL: $y = \mathcal{D}(\Phi \overline{x})$

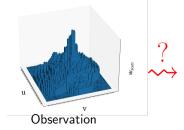
• $\overline{x} \in \mathbb{R}^N$: original image

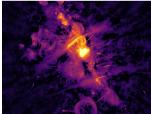
• $\Phi \colon \mathbb{R}^N \to \mathbb{R}^M$: linear measurement operator

• $\mathcal{D} \colon \mathbb{R}^M \to \mathbb{R}^M \colon$ degradation model (e.g., additive Gaussian noise)

OBJECTIVE: Find an estimate \widehat{x} of \overline{x} from y

* EXAMPLE: Radio-interferometric imaging in astronomy





Estimate

Minimization problem

- * VARIATIONAL APPROACH: Find $\widehat{x} \in \text{Argmin } h_u(x) + \lambda g(x)$
 - h_u data fidelity term
 - $\lambda > 0$ and g regularization term (e.g., TV or ℓ_1 in a wavelet domain)
 - ullet $C\subset\mathbb{R}^N$ feasibility set

EXAMPLES:

- Gaussian noise: $h_u(x) = \frac{1}{2} ||\Phi x y||^2$
- Poisson noise: $h_y(x) = \sum_{m=1}^{M} ([\Phi x]_m \mathsf{z}_m \log([\Phi x]_m))$
- Energy-bounded noise: $h_y(x) = \iota_{\mathcal{B}_2(y,\epsilon)} (\Phi x) = \begin{cases} 0 & \text{if } \Phi x \in \mathcal{B}_2(y,\epsilon) \\ +\infty & \text{otherwise.} \end{cases}$

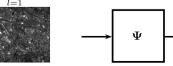
Introduction ○●○○○	MMOs 000	PnP with FNE NNs	PnP with Monotone NNs	Conclusion 00
A. Repetti et al.	Repetti et al.			2/38

Minimization problem

- * VARIATIONAL APPROACH: Find $\widehat{x} \in \operatorname{Argmin}_{x \in C} h_y(x) + \lambda g(x)$
 - h_u data fidelity term
 - $\lambda > 0$ and q regularization term (e.g., TV or ℓ_1 in a wavelet domain)
 - $C \subset \mathbb{R}^N$ feasibility set

Examples of regularisation terms

- \star Admissibility constraints: $g(x) = \sum_{l=1}^{L} \iota_{C_l}(x)$
- \star $|\ell_1|$ norm (analysis approach) $|g(x)| = \sum_{l=1}^{L} |[\mathbf{\Psi}x]_l| = \|\mathbf{\Psi}x\|_1$



Signal x

Frame decomposition operator

200

Frame coefficients

Iterative optimisation (proximal) methods

OBJECTIVE: Find
$$\widehat{x} \in \underset{x \in \mathbb{R}^N}{\operatorname{Argmin}} \ h(x) + g(x)$$
 with $h \in \Gamma_0(\mathbb{R}^N)$ and $g \in \Gamma_0(\mathbb{R}^N)$

- - Proximity operator of g at $x \in \mathbb{R}^N$ defined as $\max_g(x) = \underset{y \in \mathbb{R}^N}{\operatorname{Argmin}} \ g(y) + \frac{1}{2}\|y x\|^2$

OBJECTIVE: Generate a sequence $(x_k)_{k\in\mathbb{N}}$ converging to \widehat{x} with $(\forall k\in\mathbb{N})$ $x_{k+1}=T(x_k)$

EXAMPLES: Recursive operator $T: \mathbb{R}^N \to \mathbb{R}^N$ reminiscent from algorithms such as forward-backward, Douglas-Rachford, forward-backward-forward (Tseng), ADMM, Primal-dual (Chambolle-Pock, Condat-V $\tilde{\mathbf{u}}$), etc.

Plug-and-play methods

IN A NUTSHELL: Replace some operator(s) in the iterations with a learned version

Example: We want to
$$\underset{x \in \mathbb{R}^N}{\text{minimize}} \ \frac{1}{2} \|\Phi x - y\|^2 + g(x)$$

FB iterations:
$$(\forall k \in \mathbb{N})$$
 $x_{k+1} = \operatorname{prox}_{\gamma g} \left(x_k - \gamma \Phi^*(\Phi x_k - y) \right)$

Approximated model: Replace Φ and Φ^* (unknown) by learned approximations $\widetilde{\Phi}$ and $\widetilde{\Phi}^*$:

$$(\forall k \in \mathbb{N}) \quad x_{k+1} = \operatorname{prox}_{\gamma g} \left(x_k - \gamma \widetilde{\Phi}^* (\widetilde{\Phi} x_k - y) \right)$$

More powerful regularizer/denoiser: Replace prox₂₀ by hand-crafted (e.g., BM3D) or learned (e.g., neural network) regularizer/denoiser $J: \mathbb{R}^N \to \mathbb{R}^N$:

$$(\forall k \in \mathbb{N}) \quad x_{k+1} = J(x_k - \gamma \Phi^*(\Phi x_k - y))$$

PnP with Monotone NNs

Conclusion

4/38

PnP with FNF NNs

Introduction

00000 A. Repetti et al.

- Approximated model: $(\forall k \in \mathbb{N})$ $x_{k+1} = \operatorname{prox}_{\gamma g} \left(x_k \gamma \widetilde{\Phi}^* (\widetilde{\Phi} x_k y) \right)$ More powerful regularizer/denoiser: $(\forall k \in \mathbb{N})$ $x_{k+1} = J \left(x_k \gamma \Phi^* (\Phi x_k y) \right)$

How to build reliable PnP methods?

PNP ITERATIONS: Can we use any scheme?

MMOs

NN ARCHITECTURES: Can we use any denoising NN?

Theoretical understanding?

Asymptotic convergence: Does $(x_k)_{k\in\mathbb{N}}$ still converge?

CHARACTERISATION OF THE LIMIT POINT: If $(x_k)_{k\in\mathbb{N}}$ converges to \widehat{x} , what is \widehat{x} ?

See, e.g., [Hasannasab et al., 2020], [Terris et al., 2020], [Cohen et al., 2021], [Pesquet et al., 2021], [Hurault et al., 2021], [De Bortorli et al., 2021], ...

5/38

Objectives and outline

A. REPETTI et al.

- Adopt a variational/monotone inclusion formulation instead of traditional variational formulation
 - → Use Maximally Monotone Operator (MMO) theory
- Learn monotone operators and resolvent of MMOs to generalize gradients and proximity operators, respectively
 - which uses a regularization during training to penalize the Lipschitz constant of the network
- Use these approaches to design **convergent** plug-and-play algorithms
 - \sim Learn denoiser to replace *resolvent operator* (\approx proximity operator)
 - \sim Learn forward model to replace *monotone operator* (\approx gradient operator)

PnP with Monotone NNs

Conclusion

PnP with FNE NNs

Introduction

MMOs

•00

MMO theory

Maximally Monotone Operators (MMOs)

Let
$$A \colon \mathcal{H} \to 2^{\mathcal{H}}$$
 be a multivariate operator

• A is monotone if, for every $(x_1, x_2) \in \mathcal{H}^2$, $u_1 \in Ax_1$ and $u_2 \in Ax_2$,

$$\langle x_1 - x_2 \mid u_1 - u_2 \rangle \geqslant 0$$

- A is maximally monotone if and only if, for every $(x_1,u_1) \in \mathcal{H}^2$, $u_1 \in Ax_1 \iff (\forall x_2 \in \mathcal{H})(\forall u_2 \in Ax_2)\langle x_1 x_2 \mid u_1 u_2 \rangle \geqslant 0$
 - i.e., if there is no monotone operator that properly contains it
- The resolvent of A is $J_A = (\mathrm{Id} + A)^{-1}$

Particular case: Let $q \in \Gamma_0(\mathbb{R}^N)$.

- $oldsymbol{\partial} g$ is an MMO
- $\operatorname{prox}_q = J_{\partial g}$

Introduction 00000	MMOs ○○●	PnP with FNE NNs	PnP with Monotone NNs	Conclusion 00
A. Repetti et al.	Repetti et al. \star Learning Monotone Operators for Computational Imaging \star			8/38

Monotone inclusion problem

VARIATIONAL INCLUSION PROBLEM: Let
$$h \in \Gamma_0(\mathbb{R}^N)$$
 and $g \in \Gamma_0(\mathbb{R}^N)$

$$0 \in \partial h(\widehat{x}) + \partial g(\widehat{x}) \Rightarrow \widehat{x} \in \text{Argmin} \ h(x) + g(x)$$

VARIATIONAL INCLUSION PROBLEM: Let $h \in \Gamma_0(\mathbb{R}^N)$ and $q \in \Gamma_0(\mathbb{R}^N)$

$$0 \in \partial h(\widehat{x}) + \partial g(\widehat{x}) \Rightarrow \widehat{x} \in \operatorname{Argmin}_{X} h(x) + g(x)$$

Monotone inclusion problem:

Monotone inclusion problem

$$0 \in \partial h(\widehat{x}) + \partial g(\widehat{x})$$
 is a particular case of $0 \in \partial h(\widehat{x}) + A(\widehat{x})$, where A is an MMO

IDEA: Learn A instead of a

- \star More flexible as ∂a is a particular case of MMOs
- \star Most of proximal algorithms are derived from MMO theory (e.g., FB, primal-dual Condat-Vũ, Douglas-Rachford, etc.)

EXAMPLE: FB algorithm: $(\forall k \in \mathbb{N}) \ x_{k+1} = J_{\gamma_k A} (x_k - \gamma_k \nabla h(x_k))$

Learning firmly nonexpansive NNs

• J.-C. Pesquet, A.R., M. Terris, and Y. Wiaux. Learning maximally monotone operators for image recovery, *SIAM Journal on Imaging Sciences*, 14(3):1206-1237, August 2021.

- PnP for monotone inclusion problems: Learning a resolvent
 - ★ Same principle as PnP from proximal algorithms:
 - Choose any algorithm whose proof is based on MMO theory
 - **2** Replace the resolvent operator J_A by a learned denoiser \widetilde{J}

PnP for monotone inclusion problems: Learning a resolvent

- * Same principle as PnP from proximal algorithms:
 - Choose any algorithm whose proof is based on MMO theory
 - Replace the resolvent operator J_A by a learned denoiser \widetilde{J}

Let $(x_k)_{k\in\mathbb{N}}$ be a sequence generated by a PnP algorithm.

- If \widetilde{J} is firmly nonexpansive, then $(x_k)_{k\in\mathbb{N}}$ converges to \widehat{x} .
 - J is μ -Lipschitz, with $\mu > 0$, if $(\forall (x_1, x_2) \in \mathcal{H}^2)$ $||J(x_1) J(x_2)|| \leqslant \mu ||x_1 x_2||$
 - If J is 1-Lipschitz, then it is nonexpansive
 - J is firmly nonexpansive if $(\forall (x_1, x_2) \in \mathcal{H}^2)$ $||J(x_1) J(x_2)||^2 \leqslant \langle x_1 x_2 \mid J(x_1) J(x_2) \rangle$

PnP for monotone inclusion problems: Learning a resolvent

- * Same principle as PnP from proximal algorithms:
 - Choose any algorithm whose proof is based on MMO theory
 - Propose any algorithm whose proof is based on Mino theo Replace the resolvent operator J_A by a learned denoiser \tilde{J}

Let $(x_k)_{k\in\mathbb{N}}$ be a sequence generated by a PnP algorithm. • If \widetilde{J} is firmly nonexpansive, then $(x_k)_{k\in\mathbb{N}}$ converges to \widehat{x} .

• For $\widetilde{J} = \frac{\operatorname{Id} + Q}{2}$, with Q nonexpansive, $\exists A \text{ MMO s.t. } 0 \in \partial h(\widehat{x}) + A(\widehat{x})$.

Let $A \colon \mathcal{H} \to 2^{\mathcal{H}}$. The following are equivalent

- ullet A is an MMO.
- J_A is firmly nonexpansive
- $J_A \colon \mathcal{H} \to \mathcal{H} \colon x \mapsto \frac{x + Q(x)}{2}$, for $Q \colon \mathcal{H} \to \mathcal{H}$ nonexpansive.

Then $A = 2(\text{Id} + Q)^{-1} - \text{Id}$

Learn MMOs?

- Use NNs to approximate the resolvent of an MMO
- \sim Choose $\widetilde{J} = \frac{\operatorname{Id} + Q}{2}$, where Q is nonexpansive
- Convergence of PnP (any iteration scheme whose convergence proof is based on MMOs)
- Characterization of the limit point as a solution to a monotone inclusion problem
- Approximation theorem ensuring (stationary) MMOs can be approximated by feedforward NNs
- Training method to ensure NN Q to be nonexpansive

Jacobian regularization for FNE NNs

- * NETWORK: $\widetilde{J}_{\theta} : \mathbb{R}^N \to \mathbb{R}^N$ with learnable parameters $\theta \in \mathbb{R}^P$ (e.g., convolutional kernels)
- * TRAINING SET: Pairs of groundtruth/observations $(\overline{x}_{\ell}, y_{\ell})_{1 \leq \ell \leq L}$, with $(\overline{x}_{\ell}, y_{\ell}) \in (\mathbb{R}^{N})^{2}$

Example of denoising network:
$$(\forall \ell \in \{1, ..., L\})$$
 $y_{\ell} = \overline{x}_{\ell} + \sigma w_{\ell}$

where $\sigma > 0$ and w_{ℓ} realization of standard normal i.i.d. random variable

* Training minimization problem:

$$\underset{\theta \in \mathbb{R}^P}{\operatorname{minimize}} \ \sum_{\ell=1}^L \|\widetilde{J}_{\theta}(y_\ell) - \overline{x}_\ell\|^2 \quad \text{s.t.} \quad Q_{\theta} = 2\widetilde{J}_{\theta} - \operatorname{Id} \quad \text{is nonexpansive}$$

- * NETWORK: $\widetilde{J}_{\theta} \colon \mathbb{R}^N \to \mathbb{R}^N$ with learnable parameters $\theta \in \mathbb{R}^P$ (e.g., convolutional kernels)
- * TRAINING SET: Pairs of groundtruth/observations $(\overline{x}_{\ell}, y_{\ell})_{1 \leq \ell \leq L}$, with $(\overline{x}_{\ell}, y_{\ell}) \in (\mathbb{R}^{N})^{2}$

Example of denoising network:
$$(\forall \ell \in \{1, ..., L\})$$
 $y_{\ell} = \overline{x}_{\ell} + \sigma w_{\ell}$

where $\sigma > 0$ and w_{ℓ} realization of standard normal i.i.d. random variable

* Training minimization problem:

Jacobian regularization for FNE NNs

$$\underset{\theta \in \mathbb{R}^P}{\operatorname{minimize}} \quad \sum_{\ell=1}^L \|\widetilde{J}_{\theta}(y_{\ell}) - \overline{x}_{\ell}\|^2 \quad \text{s.t.} \quad (\forall x \in \mathbb{R}^N) \ \|\nabla Q_{\theta}(x)\| \leqslant 1$$

Jacobian regularization for FNE NNs

- * NETWORK: $\widetilde{J}_{\theta} \colon \mathbb{R}^N \to \mathbb{R}^N$ with learnable parameters $\theta \in \mathbb{R}^P$ (e.g., convolutional kernels)
- TRAINING SET: Pairs of groundtruth/observations $(\overline{x}_{\ell}, y_{\ell})_{1 \leq \ell \leq L}$, with $(\overline{x}_{\ell}, y_{\ell}) \in (\mathbb{R}^N)^2$

Example of denoising network:
$$(\forall \ell \in \{1, ..., L\})$$
 $y_{\ell} = \overline{x}_{\ell} + \sigma w_{\ell}$

where $\sigma > 0$ and w_{ℓ} realization of standard normal i.i.d. random variable

TRAINING MINIMIZATION PROBLEM:

$$\underset{\theta \in \mathbb{R}^P}{\operatorname{minimize}} \ \sum_{\ell=1}^L \|\widetilde{J}_{\theta}(y_{\ell}) - \overline{x}_{\ell}\|^2 \quad \text{s.t.} \quad (\forall x \in \mathbb{R}^N) \ \|\nabla Q_{\theta}(x)\| \leqslant 1$$

where $\lambda > 0$, $\varepsilon > 0$, and $(\forall \ell \in \{1, \dots, L\})$ $\widetilde{x}_{\ell} = \varrho_{\ell} \overline{x}_{\ell} + (1 - \varrho_{\ell}) \widetilde{J}_{\theta}(y_{\ell})$, with ϱ_{ℓ} realization of a r.v. with uniform distribution on [0,1]

- * $\|\nabla Q_{\theta}(\widetilde{x}_{\ell})\|^2$ computed using Jacobian-vector product in Pytorch and auto-differentiation, within power iterations
- * Can be solved using, e.g., SGD or Adam...

Jacobian regularization for FNE NNs

- * NETWORK: $\widetilde{J}_{\theta} \colon \mathbb{R}^N \to \mathbb{R}^N$ with learnable parameters $\theta \in \mathbb{R}^P$ (e.g., convolutional kernels)
- Training set: Pairs of groundtruth/observations $(\overline{x}_{\ell}, y_{\ell})_{1 \leq \ell \leq L}$, with $(\overline{x}_{\ell}, y_{\ell}) \in (\mathbb{R}^{N})^{2}$

Example of denoising network:
$$(\forall \ell \in \{1, ..., L\})$$
 $y_{\ell} = \overline{x}_{\ell} + \sigma w_{\ell}$

where $\sigma > 0$ and w_{ℓ} realization of standard normal i.i.d. random variable

TRAINING MINIMIZATION PROBLEM:

Jacobian regularisation: Training results

- ullet Choose $\widetilde{J}_{ heta}=rac{\mathsf{Id}+Q_{ heta}}{2}$ to be a denoising DnCNN
- ImageNet test set converted to grayscale images in [0, 255]
- Choose $\lambda > 0$ to ensure Q_{θ} to be 1-Lipschitz

ILLUSTRATION: Fix $\sigma = 3$ and vary λ

λ	0	5×10^{-7}	1×10^{-6}	5×10^{-6}	1×10^{-5}	4×10^{-5}	1.6×10^{-4}	3.2×10^{-4}
$\max_{x} \ \nabla Q_{\theta}(x)\ ^2$	31.36	1.65	1.349	1.028	0.9799	0.9449	0.9440	0.9401

$$\lambda \geqslant 10^{-5} \Rightarrow \max_{x} \|\nabla Q_{\theta}(x)\|^{2} \leqslant 1 \Rightarrow \widetilde{J}_{\theta}$$
 firmly nonexpansive

Jacobian regularisation: Training results

- Choose $\widetilde{J}_{\theta} = \frac{\operatorname{Id} + Q_{\theta}}{2}$ to be a denoising DnCNN
- ImageNet test set converted to grayscale images in [0, 255]
- Choose $\lambda > 0$ to ensure Q_{θ} to be 1-Lipschitz

ILLUSTRATION: Vary $\sigma \in \{5, 10, 30\}$, choose $\lambda > 0$ such that $\max_x \|\nabla Q_{\theta}(x)\|^2 \leq 1$

σ	λ	$\max_{x} \ \nabla Q_{\theta}(x)\ $	PSNR (dB)
5	1e - 03	0.9926	36.65
10	5e - 03	0.9905	32.12
20	1e-02	0.9598	28.40

Case of the Primal-dual PnP algorithm for monotone inclusion problems with firmly nonexpansive denoising network

Application to Computational Optical Imaging with a Photonic lantern

C. S. Garcia, M. Larcheveque, S. O'Sullivan, M. Van Waerebeke, R. R. Thomson, A.R., and J.-C. Pesquet. A
primal-dual data-driven method for computational optical imaging with a photonic lantern, PNAS Nexus,
3(4):164, April 2024

- Variational minimization problem: Find $\widehat{x} \in \underset{\varepsilon \to \mathbb{R}^N}{\operatorname{Argmin}} | \iota_{\mathcal{B}_2(y,\varepsilon)}(\Phi x) + \underline{g(x)}$
- Can be rewritten as a VARIATIONAL INCLUSION PROBLEM:

Find
$$\widehat{x} \in \mathbb{R}^N$$
 such that $0 \in \Phi^* N_{\mathcal{B}_2(y,\varepsilon)}(\Phi \widehat{x}) + \frac{\partial g(\widehat{x})}{\partial g(\widehat{x})}$

where N_S denotes the normal cone of some set S defined as

$$N_S(x) = \begin{cases} \{u \in \mathcal{H} \mid (\forall y \in S) \ \langle u \mid y - x \rangle \leqslant 0\}, & \text{if } x \in S, \\ \varnothing, & \text{otherwise.} \end{cases}$$

Monotone inclusion problem: Morozov formulation

- Variational minimization problem: Find $\widehat{x} \in \operatorname{Argmin}_{x \in \mathbb{R}^N} \left[\iota_{\mathcal{B}_2(y,\varepsilon)}(\Phi x) + g(x) \right]$
- Can be rewritten as a VARIATIONAL INCLUSION PROBLEM:

Find
$$\widehat{x} \in \mathbb{R}^N$$
 such that $0 \in \Phi^*N_{\mathcal{B}_2(y,arepsilon)}(\Phi\widehat{x}) + \frac{\partial g(\widehat{x})}{\partial g(\widehat{x})}$

where N_S denotes the normal cone of some set S defined as

$$N_S(x) = \begin{cases} \{u \in \mathcal{H} \mid (\forall y \in S) \, \langle u \mid y - x \rangle \leqslant 0\}, & \text{if } x \in S, \\ \varnothing, & \text{otherwise.} \end{cases}$$

• Particular case of MONOTONE INCLUSION PROBLEM:

Find
$$\widehat{x} \in \mathbb{R}^N$$
 such that $0 \in \Phi^*N_{\mathcal{B}_2(y,\varepsilon)}(\Phi \widehat{x}) + A(\widehat{x})$, where A is an MMO

- IDEA: Use primal-dual algorithm [Chambolle, Pock, 2011][Condat, 2013][Vũ, 2013]
 - Approximate the resolvent J_A of A by a FNE NN \widetilde{J}_{θ}

Let $(x_0,v_0)\in\mathbb{R}^N imes$

Proposed primal-dual PnP method

Let
$$(x_0, v_0) \in \mathbb{R}^N \times \mathbb{R}^M$$
 and $(\tau, \sigma) \in]0, +\infty[^2$ for $k = 0, 1, \dots$ do
$$x_{k+1} = \widetilde{J}_\theta \big(x_k - \tau \Phi^* u_k \big)$$
 $\widetilde{u}_k = u_k + \sigma \Phi(2x_{k+1} - x_k)$ $u_{k+1} = \widetilde{u}_k - \sigma \operatorname{prox}_{\sigma^{-1}h} \big(\sigma^{-1} \widetilde{u}_k \big)$ end for

CONVERGENCE:

Assume that $\tau \sigma \|\Phi\|^2 < 1$, and that $\widetilde{J}_{\theta} = \frac{\mathsf{Id} + Q_{\theta}}{2}$, where Q_{θ} is a 1-Lipschitz NN.

Let \widetilde{A} be the MMO equal to $\widetilde{J}_{a}^{-1} - \mathrm{Id}$.

Assume that there exists at least a solution \widehat{x} to the inclusion $0 \in \Phi^*N_{\mathcal{B}_2(y,\varepsilon)}(\Phi\widehat{x}) + \tau^{-1}\widetilde{A}(\widehat{x})$

Then $(x_k)_{k\in\mathbb{N}}$ converges to a such a solution.

A. Repetti et al.

* Learning Monotone Operators for Computational Imaging *

Application to computational optical imaging with a photonic lantern

OBJECTIVE:

- Optical fibres used for imaging in-vivo biological processes, e.g., microendoscopy
- Fibre must be stable to movements (e.g., bending)
- Produce accurate imaging (with high spatial resolution)
- Highly compressed observed data

Experimental setup used to acquire the data during the photonic lantern imaging experiments

17/38

Imaging inverse problem [Choudhury et al., 2020]

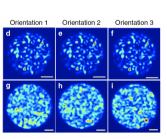
Inverse problem: $z = \Phi \overline{x} + w$

- $\star \ \overline{x} \in \mathbb{R}^N$ is the original unknown image $(N = 377 \times 377)$
- $\star \ \Phi \in \mathbb{R}^{M \times N}$ is the measurement matrix
 - Each row of Φ contains a pattern generated by the fiber
 - $11 \times 11 = 121$ patterns can be generated $\rightsquigarrow M/N \approx 0.085\%$ + 9 possible rotations of 40° (= 1089 patterns) $\rightsquigarrow M/N \approx 0.77\%$
- $\star w$ is a realization of a random noise assumed to have bounded energy

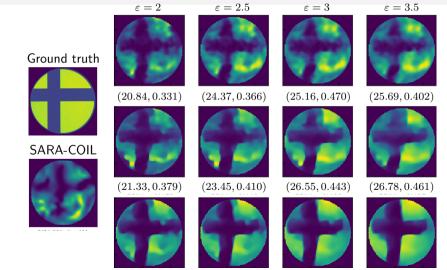
OBJECTIVE: Find an estimate \hat{x} of \overline{x} from z

x = x = x

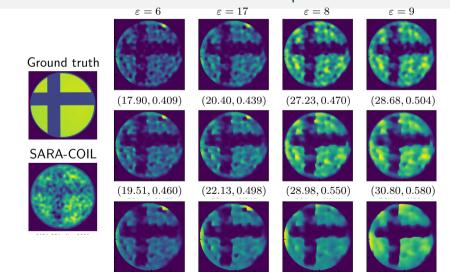
EXAMPLES OF PATTERNS:

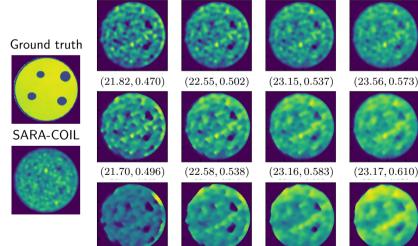


Experimental COIL data results: cross 121 patterns



Experimental COIL data results: cross 1089 patterns





Introduction 00000	MMOs 000	PnP with FNE NNs	PnP with Monotone NNs •0000000000000	Conclusion 00
A. Repetti et al.	* I	22/38		

Learning monotone operators

• Younes Belkouchi, J.-C. Pesquet, A.R., and H. Talbot. Learning truly monotone operators with applications to nonlinear inverse problems, SIAM Journal on Imaging Sciences, 18(1), 735-764, 2025.

PnP for monotone inclusion problems: Learning a monotone operator

- * Same principle as PnP from proximal algorithms:
 - 1 Choose any algorithm whose proof is based on MMO theory
 - 2 Replace the monotone (continuous) operator A by a learned approximation \widetilde{A}

A. REPETTI et al.

* LEARNING MONOTONE OPERATORS FOR COMPUTATIONAL IMAGING *

23/38

PnP for monotone inclusion problems: Learning a monotone operator

- * Same principle as PnP from proximal algorithms:
 - 1 Choose any algorithm whose proof is based on MMO theory
 - 2 Replace the monotone (continuous) operator A by a learned approximation \widetilde{A}

- ✓ Convergence of PnP (any iteration scheme whose convergence proof is based on MMOs)
- Characterization of the limit point as a solution to a monotone inclusion problem
- \checkmark Training method to ensure NN \widetilde{A} to be monotone

A. Repetti et al.

★ Learning Monotone Operators for Computational Imaging ★

24/38

Link between monotone operators and Jacobian properties

Let $A \colon \mathbb{R}^N \to \mathbb{R}^N$ be Fréchet differentiable, and $\beta \geqslant 0$ Then we have:

A is
$$\beta$$
-strongly monotone \Leftrightarrow $(\forall x \in \mathbb{R}^N)$ $\nabla^s A(x) \succcurlyeq \beta \mathrm{Id}$ \Leftrightarrow $(\forall x \in \mathbb{R}^N)$ $\nabla^s R_A(x) \succcurlyeq (2\beta - 1) \mathrm{Id}$

- A is β -strongly monotone , with $\beta\geqslant 0$, if $(\forall (x_1,u_2)\in\operatorname{Graph} A)(\forall (x_2,u_2)\in\operatorname{Graph} A)$ $\langle u_1-u_2\mid x_1-x_2\rangle\geqslant \beta\|x_1-x_2\|^2$
- If $\beta = 0$, then A is monotone
- The reflected operator of A if given by $R_A = 2A \mathrm{Id}$
- The symmetric part of the Jacobian of A if given by $\nabla^s A = \frac{\nabla A + (\nabla A)^\top}{2}$

Link between monotone operators and Jacobian properties

Let $A \colon \mathbb{R}^N \to \mathbb{R}^N$ be Fréchet differentiable, and $\beta \geqslant 0$ Then we have:

A is
$$\beta$$
-strongly monotone \Leftrightarrow $(\forall x \in \mathbb{R}^N)$ $\nabla^s A(x) \succcurlyeq \beta \mathrm{Id}$ \Leftrightarrow $(\forall x \in \mathbb{R}^N)$ $\nabla^s R_A(x) \succcurlyeq (2\beta - 1) \mathrm{Id}$

Particular case: A is monotone iff for every $x \in \mathbb{R}^N$

•
$$\lambda_{\min} \Big(\nabla^s A(x) \Big) \geqslant 0$$
 with $\nabla^s A = \frac{\nabla^2 A + (\nabla^2 A)^{\top}}{2}$

•
$$\lambda_{\min} (\nabla^s R_A(x)) \geqslant -1$$
 with $R_A = 2A - \text{Id}$

- * NETWORK: $\widetilde{A}_{\theta} : \mathbb{R}^N \to \mathbb{R}^N$ with learnable parameters $\theta \in \mathbb{R}^P$ (e.g., convolutional kernels)
- * Training set: Pairs of groundtruth/observations $(\overline{x}_{\ell}, y_{\ell})_{1 \leq \ell \leq L}$, with $(\overline{x}_{\ell}, y_{\ell}) \in (\mathbb{R}^{N})^{2}$
- * Training minimization problem:

$$\min_{\theta \in \mathbb{R}^P} \sum_{\ell=1}^L \|\widetilde{A}_{\theta}(y_\ell) - \overline{x}_\ell\|^2 \quad \text{s.t.} \quad \widetilde{A}_{\theta} \quad \text{is monotone}$$

- * NETWORK: $\widetilde{A}_{\theta} : \mathbb{R}^N \to \mathbb{R}^N$ with learnable parameters $\theta \in \mathbb{R}^P$ (e.g., convolutional kernels)
- * TRAINING SET: Pairs of groundtruth/observations $(\overline{x}_{\ell}, y_{\ell})_{1 \leq \ell \leq L}$, with $(\overline{x}_{\ell}, y_{\ell}) \in (\mathbb{R}^N)^2$
- * Training minimization problem:

$$\underset{\theta \in \mathbb{R}^P}{\text{minimize}} \quad \sum_{\ell=1}^L \|\widetilde{A}_{\theta}(y_{\ell}) - \overline{x}_{\ell}\|^2 \quad \text{s.t.} \quad (\forall x \in \mathbb{R}^N) \ \lambda_{\min} (\nabla^s R_{\widetilde{A}_{\theta}}(x)) \geqslant -1$$

- * NETWORK: $\widetilde{A}_{\theta} : \mathbb{R}^N \to \mathbb{R}^N$ with learnable parameters $\theta \in \mathbb{R}^P$ (e.g., convolutional kernels)
- * Training set: Pairs of groundtruth/observations $(\overline{x}_{\ell}, y_{\ell})_{1 \leq \ell \leq L}$, with $(\overline{x}_{\ell}, y_{\ell}) \in (\mathbb{R}^{N})^{2}$
- * Training minimization problem:

$$\underset{\theta \in \mathbb{R}^P}{\text{minimize}} \quad \sum_{\ell=1}^L \|\widetilde{A}_{\theta}(y_{\ell}) - \overline{x}_{\ell}\|^2 \quad \text{s.t.} \quad (\forall x \in \mathbb{R}^N) \ \lambda_{\min} (\nabla^s R_{\widetilde{A}_{\theta}}(x)) \geqslant -1$$

In practice one cannot enforce
$$\lambda_{\min} \left(\nabla^s R_{\widetilde{A}_{\theta}}(x) \right) \geqslant -1$$
 for all $x \in \mathbb{R}^N$ How to compute $\lambda_{\min} \left(\nabla^s R_{\widetilde{A}_{\theta}}(x) \right)$?

- * NETWORK: $\widetilde{A}_{\theta} : \mathbb{R}^{N} \to \mathbb{R}^{N}$ with learnable parameters $\theta \in \mathbb{R}^{P}$ (e.g., convolutional kernels)
- * TRAINING SET: Pairs of groundtruth/observations $(\overline{x}_{\ell}, y_{\ell})_{1 \leq \ell \leq L}$, with $(\overline{x}_{\ell}, y_{\ell}) \in (\mathbb{R}^N)^2$
- * Training minimization problem:

$$\underset{\theta \in \mathbb{R}^P}{\operatorname{minimize}} \quad \sum_{\ell=1}^L \|\widetilde{A}_{\theta}(y_{\ell}) - \overline{x}_{\ell}\|^2 - \zeta \min \left\{ 1 + \lambda_{\min} \left(\nabla^s R_{\widetilde{A}_{\theta}}(\overline{x}_{\ell}) \right), \varepsilon \right\}$$

where $\zeta > 0$. $\varepsilon > 0$

$$\star \ \, \lambda_{\min} \big(\nabla^s R_{\widetilde{A}_{\theta}}(\overline{x}_{\ell}) \big) = \varrho(\overline{x}_{\ell}) - \overline{\lambda}_{\max} \Big(\varrho(\overline{x}_{\ell}) \mathrm{Id} \, - \nabla^s R_A(\overline{x}_{\ell}) \Big) \ \, \text{with} \, \, \varrho(x) \geqslant \overline{\lambda}_{\max} \big(\nabla^s R_A(\overline{x}_{\ell}) \big)$$

- * Use Jacobian-vector product in Pytorch and auto-differentiation, combined with two power iterations
- * Can be solved using, e.g., SGD or Adam...

Case of the Forward-Backward-Forward PnP algorithm for monotone inclusion problems

Application to learning non-linear model approximations

Monotone inclusion problem

MONOTONE INCLUSION PROBLEM: We want to

Find
$$\widehat{x} \in \mathbb{R}^N$$
 such that $0 \in A(\widehat{x}) + \partial h(\widehat{x}) + N_C(\widehat{x})$

where

- $oldsymbol{C}$ is a closed convex set of \mathbb{R}^N
- $h: \mathbb{R}^N \to \mathbb{R}$ proper lsc convex and continuously differentiable on $C \subset \operatorname{int}(\operatorname{dom} h)$
- A monotone continuous operator defined on C

PnP with Monotone NNs

Conclusion

MONOTONE INCLUSION PROBLEM: We want to

MMOs

Find
$$\widehat{x} \in \mathbb{R}^N$$
 such that $0 \in A(\widehat{x}) + \partial h(\widehat{x}) + N_C(\widehat{x})$

PnP with FNF NNs

where

Introduction

- ullet C is a closed convex set of \mathbb{R}^N
- $h: \mathbb{R}^N \to \mathbb{R}$ proper lsc convex and continuously differentiable on $C \subset \operatorname{int}(\operatorname{dom} h)$
- A monotone continuous operator defined on C

IDEA: • Approximate operator A by a monotone continuous NN \widehat{A}_{θ} • Use a PnP version of the forward-backward-forward iterations [Tseng, 2000] combined with an Armijo's rule (to avoid cocoercive assumption on $\widetilde{A}_{ heta}$)

NOTE: Most standard NNs are continuous, especially those that use non-expansive activation functions So we "only" need to take care of the monotony property during training

Let $m_i \in C$ and $(a_{ij})_{ij}$ be a conjugate in $[0, +\infty[$

Let
$$x_0 \in C$$
 and $(\gamma_k)_{k \in \mathbb{N}}$ be a sequence in $]0, +\infty[$ for $k=0,1,\ldots$ do
$$a_k = \widetilde{A}_{\theta}(x_k) + \nabla h(x_k) \\ z_k = \operatorname{proj}_C(x_k - \gamma_k a_k) \\ x_{k+1} = \operatorname{proj}_C\left(z_k - \gamma_k(\widetilde{A}_{\theta}(z_k) + \nabla h(z_k) - a_k)\right)$$
 end for

ARMIJO-GOLDSTEIN RULE: Let $\sigma \in]0, +\infty[$ and $(\beta, \theta) \in]0, 1[^2$, and define $(\gamma_k = \sigma \beta^{i_k})_{k \in \mathbb{N}}$ where

$$(\forall k \in \mathbb{N}) \quad i_k = \inf \left\{ i \in \mathbb{N} \ \middle| \ \gamma = \sigma \beta^i, \quad \gamma \| \widetilde{A}_{\theta}(z_k) + \nabla h(z_k) - \widetilde{A}_{\theta}(x_k) - \nabla h(x_k) \| \leqslant \theta \| z_k - x_k \| \right\}.$$

Convergence: Let \widetilde{A}_{θ} be a monotone continuous NN.

Proposed FBF PnP method

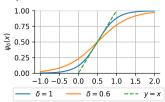
Assume that there exists at least a solution \widehat{x} to the inclusion $0 \in \widetilde{A}_{\theta}(\widehat{x}) + \partial h(\widehat{x}) + N_{C}(\widehat{x})$

Then $(x_k)_{k\in\mathbb{N}}$ converges to a such a solution $\widehat{x}\in\mathrm{dom}\,\widetilde{A}_{\theta}$.

Learning non-linear model approximations: Application to semi-blind non-linear imaging

Non-linear inverse problem: $y = F(\overline{x}) + w$

- $\overline{x} \in \mathbb{R}^N$ original unknown image and $w \in \mathbb{R}^M$ realisation of an additive i.i.d. white Gaussian random variable with zero-mean and standard deviation $\sigma \geqslant 0$
- $F: \mathbb{R}^N \to \mathbb{R}^N : x \mapsto \frac{1}{J} \sum_{j=1}^J S_{\delta}(L_j x)$
 - $S_{\delta} \colon \mathbb{R}^{N} \to \mathbb{R}^{N} \colon x = (x_{i})_{1 \leqslant i \leqslant n} \mapsto (\psi_{\delta}(x_{i}))_{1 \leqslant i \leqslant n}$ is the Hyperbolic tangent saturation function defined as $\psi_{\delta} \colon \mathbb{R} \to \mathbb{R} \colon x \mapsto \frac{\tanh(\delta(2x-1))+1}{2}$, with $\delta > 0$
 - $L_i \in \mathbb{R}^{N \times N}$ are convolution operators, with motion kernels of size 9×9 (J=1 or J=5)



* Learning Monotone Operators for Computational Imaging *

Remarks on the considered non-linear model

A. Repetti et al.

Non-linear inverse problem:
$$y = F(\overline{x}) + w$$
 with $F: \mathbb{R}^N \to \mathbb{R}^N : x \mapsto \frac{1}{J} \sum_{j=1}^J S_{\delta}(L_j x)$

30/38

- There is no guarantee that F is monotone!
- In practice F is difficult to handle, so approximations are considered:
 - Affine approximation $F^{\mathsf{aff}}(x) = \frac{\delta}{J} \sum_{i=1}^J L_j x + \frac{1-\delta}{2}$ (not necessarily monotone)
 - Linear approximation $F^{\mathrm{lin}}(x) = rac{\delta}{J} \sum_{j}^{J} L_{j} x$ (not necessarily monotone)
 - \rightsquigarrow Often $\delta = 1$ as unknown
 - Both approximations necessitate to know $(L_i)_{1 \le i \le J}$

Remarks on the considered non-linear model

Tremarks on the considered non-linear mode

Non-Linear inverse problem: $y = F(\overline{x}) + w$ with $F: \mathbb{R}^N \to \mathbb{R}^N : x \mapsto \frac{1}{J} \sum_{j=1}^J S_{\delta}(L_j x)$

There is no guarantee that F is monotone!

• In practice F is difficult to handle, so approximations are considered:

• Affine approximation
$$F^{\rm aff}(x)=rac{\delta}{J}\sum_{i=1}^J L_j x +rac{1-\delta}{2}$$
 (not necessarily monotone)

• Linear approximation
$$F^{\mathsf{lin}}(x) = \frac{\delta}{J} \sum_{i=1}^J L_j x$$
 (not necessarily monotone)

- If δ and/or $(L_j)_{1 \leqslant j \leqslant J}$ are unknown, one can learn approximations:
 - Linear approximation F_{θ}^{lin} of F (not necessarily monotone)
 - Monotone approximation F_{θ}^{mon} of F (NN with monotone constraint)
 - Non-monotone approximation F_{θ}^{nom} of F (NN without monotone constraint)

Circulation authors and accommod months de

Simulation setting and compared methods

We consider two monotone inclusion problems.

Direct regularised approach: find $\widehat{x} \in \mathbb{R}^N$ such that $0 \in F_{\theta}(\widehat{x}) - y + \varrho \nabla r(\widehat{x}) + N_C(\widehat{x})$

with $\varrho>0$, and $r\colon\mathbb{R}^N\to\mathbb{R}$ is a smoothed TV regularisation

 \longrightarrow Use FBF-PnP algorithm with $h(x) = -\langle y \mid x \rangle$ and $\widetilde{A}_{\theta} = F_{\theta} + \varrho \nabla r$

REMARK: F_{θ} should be monotone to ensure convergence of the FBF-PnP iterations

REMARK 2: F_{θ} could be either F_{θ}^{lin} , F_{θ}^{mon} , or F_{θ}^{nom}

Simulation setting and compared methods

We consider two monotone inclusion problems.

DIRECT REGULARISED APPROACH: find $\widehat{x} \in \mathbb{R}^N$ such that $0 \in F_{\theta}(\widehat{x}) - y + \varrho \nabla r(\widehat{x}) + N_C(\widehat{x})$

with $\varrho>0$, and $r\colon\mathbb{R}^N o\mathbb{R}$ is a smoothed TV regularisation

 \longrightarrow Use FBF-PnP algorithm with $h(x) = -\langle y \mid x \rangle$ and $\widetilde{A}_{\theta} = F_{\theta} + \rho \nabla r$

REMARK: F_{θ} should be monotone to ensure convergence of the FBF-PnP iterations

LEAST-SQUARES REGULARIZED APPROACH:

find
$$\widehat{x} \in \mathbb{R}^N$$
 such that $0 \in F_{\theta}^{\text{lin}^{\top}} F_{\theta}(\widehat{x}) - F_{\theta}^{\text{lin}^{\top}} y + \rho \nabla r(\widehat{x}) + N_C(\widehat{x})$

with $\rho > 0$, and $r \colon \mathbb{R}^N \to \mathbb{R}$ is a smoothed TV regularisation

REMARK: $F_{a}^{\text{lin}} F_{\theta}$ should be monotone to ensure convergence of the FBF-PnP iterations

Training results: Testing the learned approximations (BSD68)

Filters	Noise	Model	$MAE(y, F_{\theta}(\overline{x})) \ (\times 10^{-2})$	$\min \lambda_{\min} (\nabla^s F_{\theta}(\overline{x})) (\times 10^{-2})$
			$\delta=1$ for S_{δ}	
	$\sigma_{ m train}=0$	$F_{\theta}^{\mathrm{mon}}$	$1.5658 (\pm 0.58)$	1.67 > 0
		$F_{ heta}^{ ext{nom}}$	$0.2932 \ (\pm \ 0.11)$	-29.99 < 0
		$F_{\theta}^{\mathrm{mon}}$ *	$0.6822 (\pm 0.25)$	0.69 > 0
J = 1		$F_{m{ heta}}^{\mathrm{lin}}$	$2.1474 (\pm 1.38)$	-24.69 < 0
<i>3</i> — 1	$\sigma_{ m train} = 0.01$	$F_{\theta}^{\mathrm{mon}}$	$1.1575 (\pm 0.42)$	1.10 > 0
		$F_{ heta}^{ ext{nom}}$	$0.3020 \ (\pm \ 0.11)$	-27.72 < 0
		$F_{\theta}^{\mathrm{mon}}$ *	0.5351 ± 0.19	1.13 > 0
		$F_{ heta}^{\mathrm{lin}}$	$2.1607 (\pm 1.37)$	-25.87 < 0
	$\sigma_{ m train}=0$	$F_{\theta}^{\mathrm{mon}}$	$0.5272 (\pm 0.20)$	1.18 > 0
		$F_{ heta}^{ ext{nom}} \ \widetilde{F}_{ heta}^{ ext{mon}} \ *$	$0.2795 \ (\pm \ 0.10)$	-22.06 < 0
		$\widetilde{F}_{ heta}^{\mathrm{mon}}$ *	$0.6108 \ (\pm \ 0.22)$	1.80 > 0
J = 5		$F_{ heta}^{ ext{lin}}$	$2.1473 (\pm 1.38)$	-13.86 < 0
0 – 0	$\sigma_{\mathrm{train}} = 0.01$	$F_{\theta}^{\mathrm{mon}}$	$0.9414 (\pm 0.34)$	1.80 > 0
		$F_{ heta}^{ ext{nom}} \ \widetilde{F}_{ heta}^{ ext{mon}} \ *$	$0.2714 \ (\pm \ 0.09)$	-25.48 < 0
		$\widetilde{F}_{\theta}^{\mathrm{mon}}$ *	$0.6591 (\pm 0.25)$	1.64 > 0
		$F_{\theta}^{\mathrm{lin}}$	$2.1594 (\pm 1.37)$	-16.55 < 0

Training results: Testing the learned approximations (BSD68)

Filters	Noise	Model	$MAE(y, F_{\theta}(\overline{x})) \ (\times 10^{-2})$	$\min \lambda_{min} (\nabla^s F_{\theta}(\overline{x})) (\times 10^{-2})$
			$\delta=0.6$ for S_{δ}	
	$\sigma_{ m train}=0$	$F_{\theta}^{\mathrm{mon}}$	$1.2816~(\pm~0.53)$	1.91 > 0
		$F_{ heta}^{ ext{nom}}$	$0.2376 \ (\pm \ 0.09)$	-18.73 < 0
		$F_{\theta}^{\mathrm{mon}}$ *	$0.4311 (\pm 0.14)$	0.37 > 0
J = 1		$F_{\theta}^{\mathrm{lin}}$	$8.2009 (\pm 2.70)$	-42.79 < 0
<i>3</i> — 1	$\sigma_{\mathrm{train}} = 0.01$	$F_{\theta}^{\mathrm{mon}}$	$1.1689 (\pm 0.45)$	1.65 > 0
		$F_{ heta}^{ ext{nom}}$	$0.2275 \ (\pm \ 0.08)$	-23.35 < 0
		$F_{\theta}^{\mathrm{mon}}$ *	$0.4679 \ (\pm \ 0.17)$	0.54 > 0
		$F_{ heta}^{\mathrm{lin}}$	$8.1993 (\pm 2.69)$	-43.18 < 0
	$\sigma_{\mathrm{train}} = 0$	$F_{\theta}^{\mathrm{mon}}$	$0.7720 \ (\pm \ 0.30)$	1.52>0
		$F_{\theta}^{\mathrm{nom}}$	$0.1435 \ (\pm \ 0.05)$	-17.38 < 0
		$F_{ heta}^{ ext{nom}} \ \widetilde{F}_{ heta}^{ ext{mon}} \ *$	$0.4327 (\pm 0.14)$	0.40 > 0
J = 5		$F_{ heta}^{ ext{lin}}$	$8.1920 \ (\pm \ 2.70)$	-39.61 < 0
0 – 0	$\sigma_{\mathrm{train}} = 0.01$	$F_{\theta}^{\mathrm{mon}}$	$0.6867 \ (\pm \ 0.25)$	0.66 > 0
		$F_{ heta}^{ ext{nom}} \ \widetilde{F}_{ heta}^{ ext{mon *}}$	$0.1788\ (\pm\ 0.06)$	-19.04 < 0
		$\widetilde{F}_{\theta}^{\mathrm{mon}}$ *	$0.4809 (\pm 0.15)$	0.33 > 0
		$F_{ heta}^{ ext{lin}}$	$8.1969 (\pm 2.70)$	-35.39 < 0

Training results: Illustrations of learned approximations $(J=5, \delta=1)$

$$y = F(\overline{x})$$
 – PSNR = 21.17

 $(\lambda_{\min}, \lambda_{\max}) = (-0.21, 1.01)$

 $y_{Flin} = F^{lin}(\overline{x}) - \mathsf{MAE} = 0.037$ $(\lambda_{\min}, \lambda_{\max}) = (-0.09, 1.00)$

 $y_{F_{\rho}^{\text{nom}}} = F_{\rho}^{\text{nom}}(\overline{x}) - \text{MAE} = 0.003$ $y_{F_{\rho}^{\text{mon}}} = F_{\rho}^{\text{mon}}(\overline{x}) - \text{MAE} = 0.005$ $(\lambda_{\min}, \lambda_{\max}) = (0.01, 1.00)$

 $y_{F^{\text{lin}}} = F_{\theta}^{\text{lin}}(\overline{x}) - \text{MAE} = 0.037$ $(\lambda_{\min}, \lambda_{\max}) = (-0.14, 0.99)$

 $(\lambda_{\min}, \lambda_{\max}) = (0.00, 0.92)$

Training results: Illustrations of learned approximations $(J=5,\delta=0.6)$

$$y = F(\overline{x})$$
 – PSNR = 17.33

 $y_{F_{\theta}^{\text{nom}}} = F_{\theta}^{\text{nom}}(\overline{x}) - \text{MAE} = 0.009$ $(\lambda_{\min}, \lambda_{\max}) = (-0.18, 0.63)$

 $y_{F^{\text{lin}}} = F^{\text{lin}}(\overline{x}) - \text{MAE} = 0.110$ $(\lambda_{\min}, \lambda_{\max}) = (-0.09, 1.00)$

 $y_{F_{\theta}^{\text{mon}}} = F_{\theta}^{\text{mon}}(\overline{x}) - \text{MAE} = 0.009$ $(\lambda_{\min}, \lambda_{\max}) = (0.03, 0.61)$

 $y_{F_{\theta}^{\text{lin}}} = F_{\theta}^{\text{lin}}(\overline{x}) - \text{MAE} = 0.111$ $(\lambda_{\min}, \lambda_{\max}) = (-0.35, 1.00)$

 $y_{\widetilde{F}_{\theta}^{\text{mon}}} = F_{\theta}(\overline{x}) - \text{MAE} = \mathbf{0.004}$ $(\lambda_{\text{min}}, \lambda_{\text{max}}) = (0.00, 0.56)$

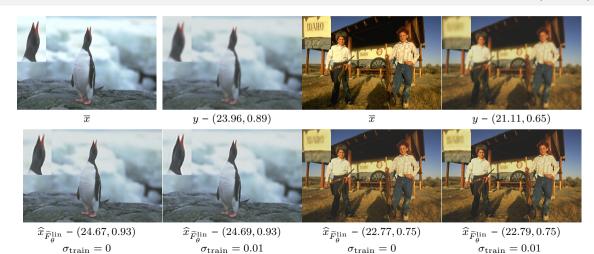
Introduction 00000	MMOs 000		PnP with FNE NNs		nP with Monotone NNs oooooooooooooo	Conclusion 00			
A. Repetti et al. * Learning Monotone Operators for Computational Imaging *						34/38			
Simulation results: PnP restoration with $\sigma = 0.01$ (BSD68)									
	Problem	Operator	$\sigma_{ m train}$	= 0	$\sigma_{ m train} = 0$	$\sigma_{\rm train} = 0.01$			
	1 TODICITI	Operator	PSNR	SSIM	PSNR	SSIM			
$(I \delta) = (1 \ 1)$	Direct	F_{\cdot}^{mon}	$24.56(\pm 3.96)$	$0.80(\pm 0.11)$	$24.58(\pm 4.26)$	$0.80(\pm 0.11)$			

	Problem	Operator	$\sigma_{\mathrm{train}} = 0$		$\sigma_{\mathrm{train}} = 0.01$	
			PSNR	SSIM	PSNR	SSIM
$(J,\delta) = (1,1)$	Direct	$F_{\theta}^{\mathrm{mon}}$	$24.56(\pm 3.96)$	$0.80(\pm 0.11)$	$24.58(\pm 4.26)$	$0.80(\pm 0.11)$
	Least-squares	$\widetilde{F}_{ heta}^{\mathrm{mon}}$	$26.32(\pm 4.14)$	$0.85(\pm 0.04)$	$28.31(\pm 3.66)$	$0.89(\pm 0.04)$
	Least-squares	$\widetilde{F}_{ heta}^{ ext{lin}}$	$25.59(\pm 3.14)$	$0.87(\pm 0.07)$	$25.59(\pm 3.11)$	$0.87(\pm 0.07)$
$(J,\delta) = (5,1)$	Direct	$F_{\theta}^{\mathrm{mon}}$	$27.46(\pm 4.31)$	$0.87(\pm 0.08)$	$26.96(\pm 4.13)$	$0.86(\pm0.08)$
	Least-squares	$\widetilde{F}_{ heta}^{\mathrm{mon}}$	$28.31(\pm 4.32)$	$0.89(\pm 0.06)$	$28.33(\pm 4.33)$	$0.89(\pm 0.06)$
	Least-squares	$\widetilde{F}_{ heta}^{ ext{lin}}$	$25.21(\pm 3.29)$	$0.86(\pm0.08)$	$25.23(\pm 3.32)$	$0.86(\pm0.08)$
$(J,\delta) = (1,0.6)$	Direct	$F_{\theta}^{\mathrm{mon}}$	$25.17(\pm 3.99)$	$0.81(\pm 0.10)$	$25.14(\pm 3.99)$	$0.81(\pm 0.10)$
	Least-squares	$\widetilde{F}_{ heta}^{\mathrm{mon}}$	$25.33(\pm 3.61)$	$0.81(\pm 0.07)$	$26.09(\pm 4.02)$	$0.83 (\pm 0.07)$
	Least-squares	$\widetilde{F}_{ heta}^{ ext{lin}}$	$18.77(\pm 2.71)$	$0.77(\pm 0.12)$	$18.77(\pm 2.71)$	$0.77(\pm 0.12)$
$(J,\delta) = (5,0.6)$	Direct	$F_{\theta}^{\mathrm{mon}}$	$26.43(\pm 4.23)$	$0.84(\pm 0.09)$	$26.63(\pm 4.32)$	$0.84(\pm 0.09)$
	Least-squares	$\widetilde{F}_{\theta}^{\mathrm{mon}}$	$24.75(\pm 4.33)$	$0.77(\pm 0.13)$	$24.73(\pm 4.32)$	$0.77(\pm 0.13)$
	Least-squares	$\widetilde{F}_{ heta}^{ ext{lin}}$	$18.40(\pm 2.74)$	$0.72(\pm 0.14)$	$18.40(\pm 2.74)$	$0.72(\pm 0.14)$

A. Repetti et al.

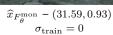
* Learning Monotone Operators for Computational Imaging * 35/38

Simulation results: **PnP restoration** with $\sigma=0.01$, J=5, $\delta=1$ (visual)



A. Repetti et al.
* Learning Monotone Operators for Computational Imaging *

Simulation results: **PnP restoration** with $\sigma = 0.01$, J = 5, $\delta = 1$ (visual)



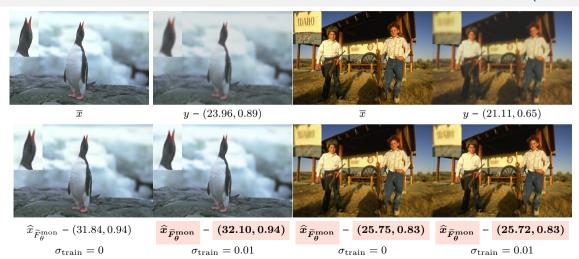
 $\widehat{x}_{F_{\theta}^{\text{mon}}} - (30.98, 0.93)$ $\sigma_{\text{train}} = 0.01$

$$\widehat{x}_{F_{\theta}^{\text{mon}}} - (24.67, 0.80)$$
 $\sigma_{\text{train}} = 0.01$

35/38

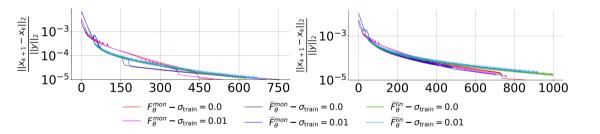
0000 00000000000 00000000000000 00 A. Repetti *et al.* ★ Learning Monotone Operators for Computational Imaging ★ 35/38

Simulation results: **PnP restoration** with $\sigma = 0.01$, J = 5, $\delta = 1$ (visual)

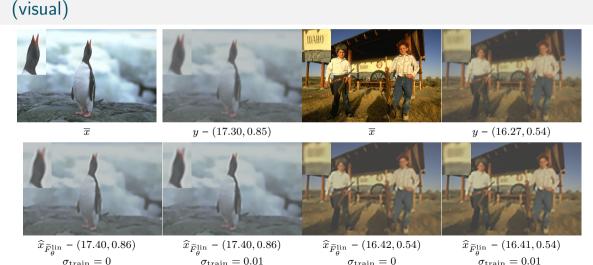


A. Repetti et al. * Learning Monotone Operators for Computational Imaging *

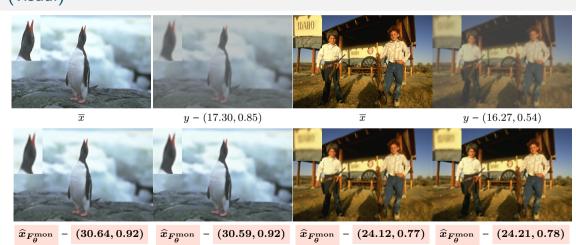
Simulation results: **PnP restoration** with $\sigma = 0.01$, J = 5, $\delta = 1$ (visual)



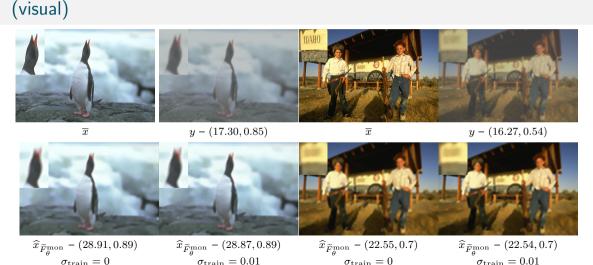
Simulation results: **PnP restoration** with $\sigma=0.01,\ J=5,\ \delta=0.6$



Simulation results: **PnP restoration** with $\sigma=0.01,\ J=5,\ \delta=0.6$ (visual)



Simulation results: **PnP restoration** with $\sigma = 0.01$, J = 5, $\delta = 0.6$



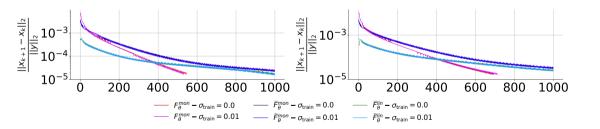
 $\sigma_{\text{train}} = 0$

36/38

A. Repetti et al.

* Learning Monotone Operators for Computational Imaging *

Simulation results: PnP restoration with $\sigma=0.01,\ J=5,\ \delta=0.6$ (visual)



Conclusion

- * Plug-and-play algorithms with FNE NNs and monotone NNs
 - Use any proximal algorithm whose proof holds for MMOs
 - Ensures convergence of the iterates
 - Characterisation of the limit point as solution to monotone inclusion problem
- Training methods for learning FNE NNs and monotone NNs
 - Use Jacobian-vector product in Pytorch and auto-differentiation
 - Combine with power iterations to compute eigenvalues
- Use monotone learning method to learn optimal maps?
- Other algorithms?

Thank you for your attention

- > J.-C. Pesquet, A. Repetti, M. Terris, and Y. Wiaux. Learning maximally monotone operators for image recovery, SIAM Journal on Imaging Sciences, 14(3):1206-1237, August 2021.
- C. S. Garcia, M. Larcheveque, S. O'Sullivan, M. Van Waerebeke, R. R. Thomson, A. Repetti, and J.-C. Pesquet. A primal-dual data-driven method for computational optical imaging with a photonic lantern, PNAS Nexus, 3(4):164, April 2024.

Younes Belkouchi, J.-C. Pesquet, A. Repetti, and H. Talbot. Learning truly monotone operators with applications to nonlinear inverse problems, SIAM Journal on Imaging Sciences, 18(1), 735-764, 2025.

COIL-sim

Learning monotone NNs - remarks

FB-PnP-MMO results

Learning FNE NNs – remarks

Approximating the resolvent of an MMO

A. Repetti et al. * Learning Monotone Operators for Computational Imaging *

Feedforward neural networks

Let $(\mathcal{H}_m)_{0 \le m \le M}$ be real Hilbert spaces such that $\mathcal{H}_0 = \mathcal{H}_M = \mathcal{H}$.

A feedforward NN having M layer and both input and outure in \mathcal{H} can be seen as a composition of operators:

$$Q = T_M \cdots T_1$$

where $(\forall m \in \{1, \dots, M\})$ $T_m: \mathcal{H}_{m-1} \to \mathcal{H}_m: x \mapsto R_m(W_m x + b_m)$.

For each layer $m \in \{1, \ldots, M\}$:

- $R_m: \mathcal{H}_m \to \mathcal{H}_m$ is a nonlinear activation operator
- $W_m:\mathcal{H}_{m-1}\to\mathcal{H}_m$ is a bounded linear operator corresponding to the weights of the network
- $b_m \in \mathcal{H}_m$ is a bias parameter vector

Feedforward neural networks

Let $(\mathcal{H}_m)_{0 \leqslant m \leqslant M}$ be real Hilbert spaces such that $\mathcal{H}_0 = \mathcal{H}_M = \mathcal{H}$.

A feedforward NN having M layer and both input and ouput in ${\mathcal H}$ can be seen as a composition of operators:

$$Q = T_M \cdots T_1$$

where $(\forall m \in \{1, ..., M\})$ $T_m : \mathcal{H}_{m-1} \to \mathcal{H}_m : x \mapsto R_m(W_m x + b_m).$

NOTATION: $\mathcal{N}_{\mathcal{F}}(\mathbb{R}^N)$ denotes the class of **nonexpansive feedforward NNs**

- with inputs and outputs in \mathbb{R}^N
- ullet built from a given dictionary ${\cal F}$ of activation operators
- \bullet $\ensuremath{\mathcal{F}}$ contains the identity operator, and the sorting operator performed on blocks of size 2

In other words, a network in $\mathcal{N}_{\mathcal{F}}(\mathbb{R}^N)$ can be linear, or it can be built using max-pooling with blocksize 2 and any other kind of activation function provided that the resulting structure is 1-Lipschitz.

Stationary MMOs

Let $(\mathcal{H}_k)_{1 \leq k \leq K}$ be real Hilbert spaces.

An operator A defined on the product space space $\mathcal{H} = \mathcal{H}_1 \times \cdots \times \mathcal{H}_K$ is a stationary MMO if

its resolvent
$$J_A\colon \mathcal{H} o \mathcal{H}$$
 satisfies

$$(\forall k\in\{1,\ldots,K\})\ (\exists\,\Pi_k\in\mathcal{B}(\mathcal{H},\mathcal{H}_k)\ (\exists\,\Omega_k\in\mathcal{S}_+(\mathcal{H})\ \text{such that}$$

$$\left(\forall (x,y)\in \mathcal{H}^2\right)\quad \|\Pi_k\big(2J_A(x)-x-2J_A(y)+y\big)\|^2\leqslant \langle x-y\mid \Omega_k(x-y)\rangle$$
 with

 $\sum_{k=1}^K \Pi_k^* \, \Pi_k = ext{Id} \, ext{ and } \left\| \, \sum_{k=1}^K \Omega_k
ight\| \leqslant 1$

REMARK: If A is a stationary MMO, then it is an MMO

 $\mathcal{B}(\mathcal{H},\mathcal{H}_k)$ denotes bounded linear operators from \mathcal{H} to \mathcal{H}_k

 $\mathcal{S}_{+}(\mathcal{H})$ denotes self-adjoint nonnegative operators from \mathcal{H} to \mathcal{H}

4/16

Stationary MMOs: Examples

000€000 A. Repetti *et al.*

- $\star A = U^*BU$ is a stationary MMO where
 - $U \colon \mathcal{H} \to \mathcal{H}$ is a unitary linear operator
 - $(\forall x = (x^{(k)})_{1 \leqslant k \leqslant K} \in \mathcal{H})$ $B(x) = B_1(x^{(1)}) \times \ldots \times B_K(x^{(K)}),$ with $(\forall k \in \{1, \ldots, K\})$ $B_k \colon \mathcal{H}_k \to \mathcal{H}_k$ an MMO
- $\star \ \partial(g \circ U)$ is a stationary MMO where
 - $(\forall x = (x^{(k)})_{1 \leqslant k \leqslant K} \in \mathcal{H})$ $g(x) = \sum_{k=1}^K \varphi_k(x^{(k)})$, with $(\forall k \in \{1, \dots, K\})$ $\varphi_k \in \Gamma_0(\mathbb{R})$
 - $U \in \mathbb{R}^{K \times K}$ orthogonal
- * If A is a stationary MMO, then A^{-1} as well

Approximate MMO's resolvents with NNs

Let $\mathcal{H} = \mathbb{R}^N$ and $A \colon \mathcal{H} \to 2^{\mathcal{H}}$ be a stationary MMO.

For every compact set $S \subset \mathcal{H}$ and every $\epsilon \in]0, +\infty[$, there exists a NN

$$Q_{\epsilon} \in \mathcal{N}_{\mathcal{F}}(\mathcal{H})$$
 such that $A_{\epsilon} = 2(\mathrm{Id} + Q_{\epsilon})^{-1} - \mathrm{Id}$ satisfies:

- \star For every $x \in S$, $||J_A(x) J_{A_A}(x)|| \leq \epsilon$
- \star Let $x \in \mathcal{H}$ and let $y \in A(x)$ be such that $x + y \in S$. Then

$$(\exists x_{\epsilon} \in \mathcal{H})(\exists y_{\epsilon} \in A_{\epsilon}(x_{\epsilon})) \quad \|x - x_{\epsilon}\| \leqslant \epsilon \text{ and } \|y - y_{\epsilon}\| \leqslant \epsilon$$

Approximate MMO's resolvents with NNs

Let $\mathcal{H} = \mathbb{R}^N$ and $A \colon \mathcal{H} \to 2^{\mathcal{H}}$ be a stationary MMO.

For every compact set $S \subset \mathcal{H}$ and every $\epsilon \in]0, +\infty[$, there exists a NN

$$Q_{\epsilon} \in \mathcal{N}_{\mathcal{F}}(\mathcal{H})$$
 such that $A_{\epsilon} = 2(\operatorname{Id} + Q_{\epsilon})^{-1} - \operatorname{Id}$ satisfies:
 \star For every $x \in S$, $\|J_A(x) - J_{A_{\epsilon}}(x)\| \le \epsilon$

★ Let $x \in \mathcal{H}$ and let $y \in A(x)$ be such that $x + y \in S$. Then

$$(\exists x_{\epsilon} \in \mathcal{H})(\exists y_{\epsilon} \in A_{\epsilon}(x_{\epsilon})) \quad \|x - x_{\epsilon}\| \leqslant \epsilon \text{ and } \|y - y_{\epsilon}\| \leqslant \epsilon$$

REMARK:

0000000

- \star Same results hold if A is a convex combination of stationary MMOs
- * Due to the firmly nonexpansive condition on the NN, the results are less accurate than standard universal approximations [Hornik et al., 1989][Leshno et al., 1993]

e.g., guaranteeing arbitrary close approximation to any continuous function with a network having only one hidden layer

COIL-sim

Learning monotone NNs - remarks

FB-PnP-MMO results

Learning FNE NNs – remarks ○○○○○●○

Taining procedure

Training procedure

```
Let D \in \mathbb{N}^* be the batch size, and K \in \mathbb{N}^* be the number of training iterations
For k = 1, \ldots, K
     for d = 1, \ldots, D
          Select randomly \ell \in \{1, \ldots, L\}
          Drawn randomly w_d \sim \mathcal{N}(0,1) and \rho_d \sim \mathcal{U}([0,1])
         y_d = \overline{x}_\ell + \sigma w_d
       \widetilde{x}_d = \varrho_d \overline{x}_\ell + (1 - \varrho_d) \widetilde{J}_{\theta_L}(y_d)
     \begin{bmatrix} g_d = \nabla_{\theta} \Phi_d(\theta_k) \\ \theta_{k+1} = \mathsf{Adam}(\frac{1}{D} \sum_{d=1}^{D} g_d, \theta_k) \end{bmatrix}
```

REMARKS:

000000 A. Repetti et al.

- * Use of power method to compute $\|\nabla Q_{\theta}(x)\|$, for a given image $x \in \mathcal{H}$
 - Necessitate to apply $\nabla Q_{\theta}(x)$ and $\nabla Q_{\theta}(x)^{\top}$ (use automatic differentiation)
 - Due to memory limitations, all our experiments will be performed with 5 iterations of the power method.

COIL-sim

Learning monotone NNs - remarks

Training procedure

For $k = 1, \ldots, K$

Learning FNE NNs - remarks

```
\begin{cases} \text{for } d=1,\ldots,D \\ \text{Select randomly } \ell \in \{1,\ldots,L\} \\ \text{Drawn randomly } w_d \sim \mathcal{N}(0,1) \text{ and } \varrho_d \sim \mathcal{U}([0,1]) \\ y_d = \overline{x}_\ell + \sigma w_d \\ \widetilde{x}_d = \varrho_d \overline{x}_\ell + (1-\varrho_d) \widetilde{J}_{\theta_k}(y_d) \\ g_d = \nabla_\theta \Phi_d(\theta_k) \\ \theta_{k+1} = \operatorname{Adam}(\frac{1}{D} \sum_{d=1}^D g_d,\theta_k) \end{cases}
\text{REMARKS:}
```

* GANs (see e.g., [Gulrajani et al., 2017]): Use similar regularization to constrain the gradient norm

of the discriminator

FR-PnP-MMO results

Let $D \in \mathbb{N}^*$ be the batch size, and $K \in \mathbb{N}^*$ be the number of training iterations

- * [Hoffman et al., 2019]: Loss regularized with the Froebenius norm of the Jacobian
- * RealSN [Ryu et al., 2019]: Compute the Lipschitz constant of each convolutional layer (with 1 iteration of power method)

COIL-sim

Learning monotone NNs - remarks

FB-PnP-MMO results

•000

Learning FNE NNs – remarks

Image deblurring using forward-backward PnP algorithm

Inverse problem

Inverse problem: $z = H\overline{x} + e$

- $\star \ \overline{x} \in \mathbb{R}^N$ original unknown image
- $\star H \in \mathbb{R}^{N \times N}$ blur operator
- \star $e \in \mathbb{R}^N$ realization of Gaussian random noise $\mathcal{N}(0, \nu)$
- $\star \ z \in \mathbb{R}^N$ observations

Blur Kernels:

DATASETS:

- Training dataset: 50000 test images from the ImageNet dataset (randomly split in 98% for training and 2% for validation)
- Grayscale test dataset: BSD68 dataset (and a subsample of 10 images referred as BSD10)
- Colour test dataset: BSD500 test set

Comparison with other PnP methods: Grayscale images

SETTING:

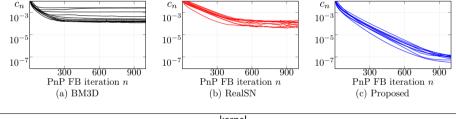
- Deblurring problem: \overline{x} from BSD10 test set, $\nu = 10^{-2}$, blur 1-8
- Training: $\lambda = 10^{-5}$, $\sigma = 9 \times 10^{-3}$
- PnP-FB algorithm: $\gamma = 1.99$

Comparison with:

- * PnP-FB with different denoiser operators:
 - RealSN
 - BM3D
 - DnCNN
- * FB with proximity operators of:
 - ℓ_1 -norm composed with a sparsifying operator consisting in the concatenation of the first eight Daubechies wavelet bases
 - total variation (TV) norm

Comparison with other PnP methods: Grayscale images

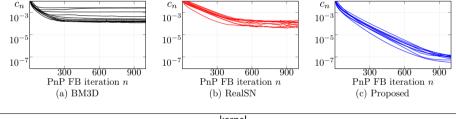
• Evaluate $c_k = \|x_k - x_{k-1}\|/\|x_0\|$, for $(x_k)_{k \in \mathbb{N}}$ generated from PnP-FB



denoiser	kernel						convergence		
	(a)	(b)	(c)	(d)	(e)	(f)	(g)	(h)	convergence
Observation	23.36	22.93	23.43	19.49	23.84	19.85	20.75	20.67	
RealSN	26.24	26.25	26.34	25.89	25.08	25.84	24.81	23.92	✓
$prox_{\mu_{\ell_1} \ \Psi^\dagger \cdot \ _1}$	29.44	29.20	29.31	28.87	30.90	30.81	29.40	29.06	✓
$prox_{\mu_{TV}\ \cdot\ _{TV}}$	29.70	29.35	29.43	29.15	30.67	30.62	29.61	29.23	✓
DnCNN	29.82	29.24	29.26	28.88	30.84	30.95	29.54	29.17	×
BM3D	30.05	29.53	29.93	29.10	31.08	30.78	29.56	29.41	×
Proposed	30.86	30.33	30.31	30.14	31.72	31.69	30.42	30.09	✓

Comparison with other PnP methods: Grayscale images

• Evaluate $c_k = \|x_k - x_{k-1}\|/\|x_0\|$, for $(x_k)_{k \in \mathbb{N}}$ generated from PnP-FB



denoiser	kernel						convergence		
	(a)	(b)	(c)	(d)	(e)	(f)	(g)	(h)	convergence
Observation	23.36	22.93	23.43	19.49	23.84	19.85	20.75	20.67	
RealSN	26.24	26.25	26.34	25.89	25.08	25.84	24.81	23.92	✓
$prox_{\mu_{\ell_1} \ \Psi^\dagger \cdot \ _1}$	29.44	29.20	29.31	28.87	30.90	30.81	29.40	29.06	✓
$prox_{\mu_{TV}\ \cdot\ _{TV}}$	29.70	29.35	29.43	29.15	30.67	30.62	29.61	29.23	✓
DnCNN	29.82	29.24	29.26	28.88	30.84	30.95	29.54	29.17	×
BM3D	30.05	29.53	29.93	29.10	31.08	30.78	29.56	29.41	×
Proposed	30.86	30.33	30.31	30.14	31.72	31.69	30.42	30.09	✓

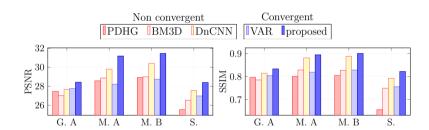
Comparison with other PnP methods: Color images

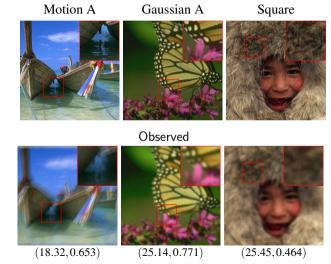
SETTING: (same as in [Bertocchi et al., 2020])

- Deblurring problem: \overline{x} from BSD500 test set, with
- **G.** A blur 9. $\nu = 8 \times 10^{-3}$
- M. A blur 8. $\nu = 10^{-2}$
- M. B blur 3, $\nu = 10^{-2}$
 - S blur 10. $\nu = 10^{-2}$
- Training: $\lambda = 10^{-5}$, $\sigma = 7 \times 10^{-3}$ for G. A, and $\sigma = 9 \times 10^{-3}$ for M. A, M.B and S
- PnP-FB algorithm: $\gamma = 1.99$

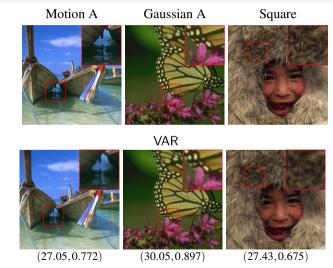
COMPARISON WITH:

- * Variational method from [Bertocchi et al., 2020]
- * PnP-PDHG [Meinhardt et al., 2017]
- ⋆ PnP-FB with BM3D
- ⋆ PnP-FB with DnCNN

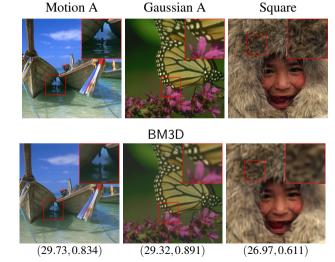




A. Repetti et al. * Learning Monotone Operators for Computational Imaging *



A DEARWING MOROTORE OF ERATORS FOR COMMUNICATIONAL IMAGING A

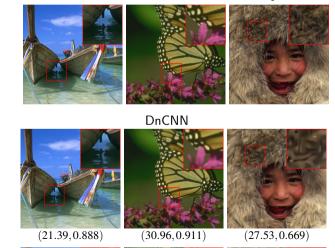


Gaussian A

Square

Comparison with other PnP methods: Color images

Motion A



Gaussian A

Square

Comparison with other PnP methods: Color images

Motion A

Simulated COIL data

SETTING:

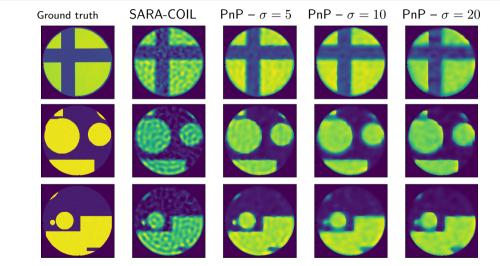
- M=1089 patterns (121 individual cores \times 9 rotations)
- input SNR 30dB
- Use 50 images with geometric patterns, of size $N=377\times377$
- Fix $\varepsilon = 50$ for data-fidelity ℓ_2 bound

AVERAGE RESULTS ON THE 50 IMAGES:

v	PSNR (dB)	SSIM	GPU (sec.)	CPU (sec.)
5	$37.81(\pm 2.49)$	$0.698(\pm 0.012)$	$13.0(\pm 1.6)$	$70.5(\pm 8.0)$
10	$37.61(\pm 2.08)$	$0.687(\pm 0.024)$	$17.0(\pm 4.3)$	$94.2(\pm 24.8)$
20	$36.81(\pm 2.42)$	$0.672(\pm 0.022)$	$16.4(\pm 4.9)$	$92.3(\pm 29.0)$
SARA-CO	IL $30.72(\pm 1.38)$	$0.544(\pm0.023)$	_	$98.9(\pm 11.8)$

13/16

Simulated COIL data results



COIL-sim

Learning monotone NNs - remarks

•00

FB-PnP-MMO results

Learning FNE NNs – remarks

Learning monotone operators – Remarks

15/16

Algorithm 3.2 Training a monotone network F_{θ}

```
1: Input:
```

2: ξ ← 0

5:

10:

11:

12:

13:

14:

• F_{θ} , N_{enochs} , B, $\Delta \xi > 0$

 $\widetilde{x}_{h_0} \leftarrow \nu x_{h_0} + (1-\nu) u_{h_0}$

 $q_{\mathbb{R}}(\theta) \in \partial \ell_{\mathbb{R}}(\theta)$

 $\theta \leftarrow \mathcal{O}(\theta, q_{\mathbb{R}}(\theta))$

. L. P. Dtrain

3: for $i = 1, \ldots, N_{\text{enochs}}$ do

• Optimizer step: $\mathcal{O}: (\theta, q) \mapsto \theta^+$

for each batch $\mathbb{B} = \{(x_b, y_b)\}_{1 \le b \le B} \subset \mathbb{D}_{\text{train}}$ of size B do

 $\ell_{\mathbb{B}} \colon \vartheta \mapsto \frac{1}{R} \sum_{b=1}^{\hat{B}} \mathcal{L}(F_{\vartheta}(x_b), y_b) + \xi \, \mathcal{P}(\vartheta, \widetilde{x}_{b_0})$

Gradient computation and optimizer step:

▷ e.g., Adam, SGD, etc.

▷ Loss, penalization and training set

> Training parameters

Computational graph related to the loss and the penalization:

 $b_0 \leftarrow \text{realization of discrete random uniform variable in } \{1, \dots, B\}$ $\nu \leftarrow$ realization of random uniform variable in [0, 1]

▷ Use Algorithm 3.1

 \triangleright Increase penalization parameter

 $\xi \leftarrow \xi + \Delta \xi$

end for

15: end for

16: Output: F_{θ}

17: return $\widehat{\rho} - \widehat{\chi} \simeq \lambda_{\min} (J_{R_{F_*}}^s(x))$

16/16