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Motivation

Yy = D(@f)

7 € RN original image
&: RY — RM: linear measurement operator
D: RM — RM: degradation model (e.g., additive Gaussian noise)

OBJECTIVE : Find an estimate Z of T from y

* EXAMPLE: Image restoration (e.g., deblurring)

Observation Estimate
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. y = D(PT)

7 € RN original image
®: RV — RM: linear measurement operator
D: RM — RM: degradation model (e.g., additive Gaussian noise)

OBJECTIVE : Find an estimate Z of T from y

* ExAMPLE: Medical imaging (CT)

Observation Estimate
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Yy = D(@E)

zZ € RY: original image
®: RY — RM: linear measurement operator
D: RM — RM: degradation model (e.g., additive Gaussian noise)

OBJECTIVE : Find an estimate ¥ of Z from y

* EXAMPLE: Radio-interferometric imaging in astronomy

Observation Estimate

Conclusion

1/38
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Minimization problem

: Find Z € Argmin hy(z) + Ag(z)
h, data fidelity term vee
A > 0 and g regularization term (e.g., TV or ¢; in a wavelet domain)

C C RY feasibility set

EXAMPLES:
* Gaussian noise: hy(z) = 3||Pz — y|°

* Poisson noise: h,(z) = ([®x]m — zm log([®z]m))

m=1

0 if &z € Ba(y,¢€)

* Energy-bounded noise: hy(z) = tp,(y,o (Px) = {+ s
oo otherwise.
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Minimization problem

: Find @ € Argmin hy(x) + Ag(x)
hy data fidelity term vee
A > 0 and g regularization term (e.g., TV or ¢; in a wavelet domain)

C C RY feasibility set

EXAMPLES OF REGULARISATION TERMS
L

* Admissibility constraints: g(x) = Z Loy (z)
=1
L
* {1 norm (analysis approach) g(z) = Z [[Px]:| = |||

—_— v —>

Signal x Frame decomposition operator  Frame coefficients
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1l Vi

lterative optimisation (proximal) methods

Find Z € Argmin h(z) + g(x) with h € To(RY) and g € To(RY)

zeRN

Can be solved using proximal algorithms

Proximity operator of g at z € R defined as prox,(z) = Argmin g(y) + Hly - z||?
yeR

Generate a sequence (z)ren converging to Z with (Vk € N)  zp41 = T'(z)

ExAMPLES: Recursive operator T: RV — RY reminiscent from algorithms such as forward-backward,
Douglas-Rachford, forward-backward-forward (Tseng), ADMM, Primal-dual (Chambolle-Pock, Condat-
Vi), etc.



Introduction MMOs PnP with FNE NNs PnP with Monotone NNs Conclusion
000e0 000 0000000000000 000000000000 000 [o]e]

A. REPETTI et al. * LEARNING MONOTONE OPERATORS FOR COMPUTATIONAL IMAGING % 4/38
S ..., S

Plug-and-play methods
IN A NUTSHELL: Replace some operator(s) in the iterations with a learned version
We want to minimize 3||®z — yl|*> + g(z)
zeRY
FB iterations: (Vk € N) xp41 = prox,, (:z:k — y®* (Dxy, — y))
Replace ® and ®* (unknown) by learned approximations ® and O*:

(Vk € N)  xp41 = prox,, (xk — 7 ®* (Bay, — y))

Replace prox,, by hand-crafted (e.g., BM3D) or learned
(e.g., neural network) regularizer/denoiser J: RN — RV:

(VEeN) zpy1 = J(xk — 70" (D) — y))



Introduction MMOs PnP with FNE NNs PnP with Monotone NNs Conclusion
000e0 000 0000000000000 000000000000 000 [o]e]

A. REPETTI et al. * LEARNING MONOTONE OPERATORS FOR COMPUTATIONAL IMAGING * 4/38
s

Plug-and-play methods

IN A NUTSHELL: Replace some operator(s) in the iterations with a learned version

(Vk € N)  xp41 = prox, (mk — y®* (B — y))
(Vk €N) Ty = J(:ck A (D — y))

How to build reliable PnP methods?
PNP 1TERATIONS: Can we use any scheme?

NN ARCHITECTURES: Can we use any denoising NN?

Theoretical understanding?
ASYMPTOTIC CONVERGENCE: Does (zx)ren still converge?

CHARACTERISATION OF THE LIMIT POINT: If (z))ken converges to Z, what is Z?

See, e.g., [Hasannasab et al., 2020], [Terris et al., 2020], [Cohen et al., 2021], [Pesquet et al., 2021], [Hurault
et al., 2021], [De Bortorli et al., 2021], ...
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Objectives and outline

e Adopt a variational/monotone inclusion formulation instead of traditional variational
formulation

~ Use Maximally Monotone Operator (MMO) theory

e Learn monotone operators and resolvent of MMOs to generalize gradients and proximity
operators, respectively

~ Use a regularization during training to penalize the Lipschitz constant of the network

e Use these approaches to design convergent plug-and-play algorithms
~~ Learn denoiser to replace resolvent operator (/= proximity operator)

~ Learn forward model to replace monotone operator (= gradient operator)
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...  —So=

[ MMO theory ]
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Maximally Monotone Operators (MMOs)

Conclusion

7/38

r

Let A: H — 27 be a multivariate operator

e Ais monotone if, for every (z1,22) € H?, uy € Az and uy € Az,

(x1 — 29 |ug —ug) =0

e Ais maximally monotone if and only if, for every (z1,u;) € H?,

i.e., if there is no monotone operator that properly contains it

e The resolvent of Ais J4 = (Id + A)~!

\.

u; € Azy & (Voo € H)(Vug € Axg){xy — 29 | ug —u2) 20

PARTICULAR CASE: Let g € Io(RY).
e Qg is an MMO

e prox, = Jog
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Monotone inclusion problem

VARIATIONAL INCLUSION PrOBLEV: Let b € To(RY) and g € To(RY)

0 € Oh(Z) + 9g(Z) = T € Argmin h(z) + g(x)
z€RN
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Monotone inclusion problem

Let h € To(RY) and g € To(RY)

0 € Oh(Z) + 9g9(Z) = T € Argmin h(z) + g(x)
xz€R

MONOTONE INCLUSION PROBLEM:
0 € Oh(Z) + 0g(Z) is a particular case of 0 € Oh(Z) + A(Z), where A is an MMO

IDEA: Learn A instead of g
* More flexible as dg is a particular case of MMOs

* Most of proximal algorithms are derived from MMO theory (e.g., FB, primal-dual Condat-Vi,
Douglas-Rachford, etc.)

ExampPLE: FB algorithm: (Vk € N) 2441 = Jy 4 (zr — v Vh(zy))
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[ Learning firmly nonexpansive NNs ]

e J.-C. Pesquet, A.R., M. Terris, and Y. Wiaux. Learning maximally monotone operators for image recovery,
SIAM Journal on Imaging Sciences, 14(3):1206-1237, August 2021.
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S ..., S

PnP for monotone inclusion problems: Learning a resolvent

* Same principle as PnP from proximal algorithms:

® Choose any algorithm whose proof is based on MMO theory
® Replace the resolvent operator J4 by a learned denoiser J
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PnP for monotone inclusion problems: Learning a resolvent

* Same principle as PnP from proximal algorithms:

® Choose any algorithm whose proof is based on MMO theory
® Replace the resolvent operator J4 by a learned denoiser J

Let (x)ren be a sequence generated by a PnP algorithm.

If J is firmly nonexpansive, then (x)ren converges to .

e Jis p-Lipschitz , with p > 0, if (V(21,22) € H?) ||J(z1) — J(z2)| < pllz1r — 22|
e If J is 1-Lipschitz, then it is nonexpansive

e Jis firmly nonexpansive if (V(z1,22) € H?) ||J(z1) — J(22)||? < (@1 — 22 | J(21) — J(22))
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PnP for monotone inclusion problems: Learning a resolvent

* Same principle as PnP from proximal algorithms:

©® Choose any algorithm whose proof is based on MMO theory
® Replace the resolvent operator J4 by a learned denoiser .J

Let (x)ren be a sequence generated by a PnP algorithm.

If J is firmly nonexpansive, then (x)ren converges to .
For J = Id;rQ, with @ nonexpansive, 34 MMO s.t. 0 € 9h(Z) + A(Z) .

Let A: H — 2% The following are equivalent
e Aisan MMO.

e J4 is firmly nonexpansive

o Jy H—H:z— %@) , for Q: H — H nonexpansive.

Then A=2(ld +Q) ' —1Id
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Learn MMOQOs?

@ Use NNs to approximate the resolvent of an MMO

~ Choose J = #, where (@ is nonexpansive

v/ Convergence of PnP (any iteration scheme whose convergence proof is based on MMOs)

v/ Characterization of the limit point as a solution to a monotone inclusion problem

v/ Approximation theorem ensuring (stationary) MMOs can be approximated by feedforward NNs

¢/ Training method to ensure NN @ to be nonexpansive
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S ..., S

Jacobian regularization for FNE NNs

% NETWORK: Jg: RN — RN with learnable parameters 6§ € R (e.g., convolutional kernels)
* TRAINING SET: Pairs of groundtruth/observations (Z¢, y¢)1<e<r, With (Ze, ye) € (RY)?

EXAMPLE OF DENOISING NETWORK: (V€ € {1,...,L}) ye=7T¢+ owy

where o > 0 and wy realization of standard normal i.i.d. random variable

* TRAINING MINIMIZATION PROBLEM:
L

minimize Z I Jo(ye) —Zel|> st. Qg =2Jp—1Id is nonexpansive
6er” (=1
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S ..., S

Jacobian regularization for FNE NNs

* NETWORK: Jyg: RN — RN with learnable parameters 6 € R” (e.g., convolutional kernels)
* TRAINING SET: Pairs of groundtruth/observations (Z¢, y¢)1<e<r, With (T, ye) € (RY)?

EXAMPLE OF DENOISING NETWORK: (V€ € {1,...,L}) ye=7T¢+ cwy

where o > 0 and wy realization of standard normal i.i.d. random variable

* TRAINING MINIMIZATION PROBLEM:
L

mieniﬂrg})ize Z 1 Jo(ye) —Zel> st (Vz e RY) [VQq(z)|| < 1
€ =1
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Jacobian regularization for FNE NNs

* NETWORK: Jyg: RN — RN with learnable parameters 6 € R” (e.g., convolutional kernels)
* TRAINING SET: Pairs of groundtruth/observations (Z¢, y¢)1<e<zr, with (Tg, ye) € (RY)?

EXAMPLE OF DENOISING NETWORK: (V€ € {1,...,L}) ye=7T¢+ cwy

where o > 0 and wy realization of standard normal i.i.d. random variable

* TRAINING MINIMIZATION PROBLEM:
L

migliﬂrg}l)ize Z 1 Jo(ye) —Zel> st (Vz e RY) [VQq(z)|| < 1
€ =1

% In practice one cannot enforce [|[VQq(z)| < 1 for all z € H.
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S ..., S

Jacobian regularization for FNE NNs

% NETWORK: Jg: RN — RN with learnable parameters # € R (e.g., convolutional kernels)

* TRAINING SET: Pairs of groundtruth/observations (Z¢, y¢)1<e<r, With (Ze, ye) € (RY)?
EXAMPLE OF DENOISING NETWORK: (V€ € {1,...,L}) ye="T¢+ owy
where o > 0 and w; realization of standard normal i.i.d. random variable
* TRAINING MINIMIZATION PROBLEM:
L
minimize Z | Jo(ye) — Tel|* + Amax {||[VQq(z,)[?, 1 — €}
6er” =
where A >0, >0, and (V0 € {1,...,L}) Ty = 0iT¢ + (1 — 00)Jo(ye), with g realization of a
r.v. with uniform distribution on [0, 1]
* |[VQo(Z,)||* computed using Jacobian-vector product in Pytorch and auto-differentiation,
within power iterations

* Can be solved using, e.g., SGD or Adam...
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Jacobian regularisation: Training results

e Choose Jy = 'difi to be a denoising DnCNN

e ImageNet test set converted to grayscale images in [0, 255]

e Choose A > 0 to ensure @y to be 1-Lipschitz
ILLUSTRATION: Fix ¢ = 3 and vary A

A 0 [5x1077[ 1x107°%] 5x107°%] 1x10° "] 4x107 "] 1.6x10 *| 3.2x10° "
max; |[VQo(z)|* || 31.36 1.65 1.349 1.028 0.9799 0.9449 0.9440 0.9401

A>107°

max;, [VQ(2)[? < 1

Jp firmly nonexpansive
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Jacobian regularisation: Training results

e Choose Jy = 'd—goi to be a denoising DnCNN
e ImageNet test set converted to grayscale images in [0, 255]

e Choose A > 0 to ensure @y to be 1-Lipschitz

[LLUSTRATION: Vary o € {5,10,30}, choose A > 0 such that max, ||[VQq(z)|> < 1

o A max,||[VQe(z)| PSNR (dB)
5 1le—03 0.9926 36.65
10 5e—03 0.9905 32.12
20 le—02 0.9598 28.40
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MMOs PnP with FNE NNs
00000@0000000

Case of the Primal-dual PnP algorithm for monotone inclusion problems
with firmly nonexpansive denoising network

Application to Computational Optical Imaging with a Photonic lantern

e C. S. Garcia, M. Larcheveque, S. O'Sullivan, M. Van Waerebeke, R. R. Thomson, A.R., and J.-C. Pesquet. A
primal-dual data-driven method for computational optical imaging with a photonic lantern, PNAS Nexus,

3(4):164, April 2024
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Monotone inclusion problem: Morozov formulation

+  VARIATIONAL MINIMIZATION PROBLEM: Find Z € Argmin 13,(,.0)(®z) + g(z)
z€RY

o Can be rewritten as a VARIATIONAL INCLUSION PROBLEM:
Find Z € RY such that 0 € ®*Np,(, ) (2Z) + Jg(7)

where Ng denotes the normal cone of some set .S defined as

Ne(z) = {lueH|VyeS)(u|ly—z) <0}, ifzels,
s N a, otherwise.
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Monotone inclusion problem: Morozov formulation

VARIATIONAL MINIMIZATION PROBLEM: Find T € Argmin 1p,(y,)(®x) + g(x)
z€RY

Can be rewritten as a VARIATIONAL INCLUSION PROBLEM:
Find Z € RY such that 0 € ®*Np,(, ) (2Z) + Jg(7)

where Ng denotes the normal cone of some set .S defined as

Ne(z) = {lueH|VyeS)(u|ly—z) <0}, ifzels,
s N a, otherwise.

Particular case of MONOTONE INCLUSION PROBLEM:

Find 2 € RY such that 0 € O Np, (y,)(®Z) + A(Z) , where A is an MMO

Use primal-dual algorithm [Chambolle, Pock, 2011][Condat, 2013][Vi, 2013]
Approximate the resolvent J4 of A by a FNE NN Jo



Introduction MMOs PnP with FNE NNs PnP with Monotone NNs Conclusion
00000 000 0000000800000 000000000000 000 [o]e]

A. REPETTI et al. * LEARNING MONOTONE OPERATORS FOR COMPUTATIONAL IMAGING % 16/38

Proposed primal-dual PnP method

Let (wg,v9) € RY x RM and (7,0) €]0, +o00[?
for k=0,1,... do

Th41 = Ja (.Z‘k — T(I)*’u,k)

Uy = up + O'(I>(2.Tk+1 — xk)

Up1 = U — 0 prox, -1y, (o~ )
end for

Assume that 7o||®||2 < 1, and that Jp = % , where @y is a 1-Lipschitz NN.

Let A be the MMO equal to J; ' — Id.

Assume that there exists at least a solution  to the inclusion 0 € ®*Npg,(, - (PT) + T LA(T)

Then (zx)ken converges to a such a solution.
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Application to computational optical imaging with a photonic lantern

Optical fibres used for imaging in-vivo biological processes, e.g., microendoscopy
Fibre must be stable to movements (e.g., bending)

Produce accurate imaging (with high spatial resolution)

Highly compressed observed data

Experimental setup used to acquire the data
during the photonic lantern imaging experiments
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Imaging inverse problem [Choudhury et al., 2020]

INVERSE PROBLEM: 2z = ®Z + w

* T € RN is the original (N =377 x 377)

x* @ € RM*N is the measurement matrix
[ ]

e 11 x 11 = 121 patterns can be generated ~~ M /N = 0.085%
+ 9 possible rotations of 40° (= 1089 patterns) ~~ M /N ~ 0.77%

* w is a realization of a random noise

Orientation 1 Orientation 2 Orientation 3

OBJECTIVE: Find an estimate Z of T from z

EXAMPLES OF PATTERNS:
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Experimental COIL data results: cross 121 patterns

e=2 5—25 e=3 €=23.5

(20.84, 0. 331) (24.37,0.366) (25.16,0.470)  (25.69,0.402)

EE

(21.33,0.379)  (23.45,0.410)  (26.55,0.443)  (26.78,0.461)

™ -
el el el e

Ground truth

\w

SARA-COIL
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Experimental COIL data results: cross 1089 patterns

e=6 e=17 e=38

(17.90,0.409) (20.40,0.439)

(19.51,0.460) (22.13,0.498) (28.98,0.550) (30.80,0.580)

(28.68,0.504)

SARA-COIL
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Experimental COIL data results: dots 1089 patterns

e=12 e=13 e=14

Ground truth

(21.82,0.470)  (22.55,0.502)  (23.15,0.537)  (23.56,0.573)

SARA-COIL

(21.70,0.496)

\

(23.16,0.583) (23.17,0.610)
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[ Learning monotone operators ]

e Younes Belkouchi, J.-C. Pesquet, A.R., and H. Talbot. Learning truly monotone operators with applications to
nonlinear inverse problems, SIAM Journal on Imaging Sciences, 18(1), 735-764, 2025.
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PnP for monotone inclusion problems: Learning a monotone operator

* Same principle as PnP from proximal algorithms:

® Choose any algorithm whose proof is based on MMO theory _
® Replace the monotone (continuous) operator A by a learned approximation A
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1l Vi

PnP for monotone inclusion problems: Learning a monotone operator

* Same principle as PnP from proximal algorithms:

® Choose any algorithm whose proof is based on MMO theory B
® Replace the monotone (continuous) operator A by a learned approximation A

v/ Convergence of PnP (any iteration scheme whose convergence proof is based on MMOs)
v/ Characterization of the limit point as a solution to a monotone inclusion problem

v/ Training method to ensure NN A to be ‘monotone



Introduction MMOs PnP with FNE NNs PnP with Monotone NNs Conclusion
00000 000 0000000000000 00e000000000000 [o]e]

A. REPETTI et al. + LEARNING MONOTONE OPERATORS FOR COMPUTATIONAL IMAGING % 24/38
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Link between monotone operators and Jacobian properties

Let A: RV — RY be Fréchet differentiable, and 3 > 0 Then we have:
Alis [-strongly monotone < (Vo € RY) V*A(z) = fld < (Vo € RN) V*Ra(z) = (28— 1)Id

A is  f-strongly monotone , with 5 > 0, if (V(x1,u2) € Graph A)(V(z2,us) € Graph A)

(uy —ug | 1 — x2) = Bller — 22|?

If 5 =0, then A is monotone

The reflected operator of A if given by Ry = 2A —Id

The symmetric part of the Jacobian of A if given by V*A = w
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s

Link between monotone operators and Jacobian properties

Let A: RN — RY be Fréchet differentiable, and 3 > 0 Then we have:
Alis [B-strongly monotone < (Vo € RY) V*A(z) = Bld & (Vo € RY) V*Ru(z) = (28— 1)Id

Particular case: A is monotone iff for every x € RY

* Amin (VSA(:C)) > 0 with VA = VALV

 Amin (VSRA(CU)) > ] with Ry =24—1d
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Jacobian regularization for monotone networks

* NETWORK: Ag: RN — RN with learnable parameters § € R (e.g., convolutional kernels)
* TRAINING SET: Pairs of groundtruth/observations (Z¢, y¢)1<e<r, With (Ze, ye) € (RV)?

* TRAINING MINIMIZATION PROBLEM:
L

minimize ZHJ%(W)—E@HQ st. Ag is monotone
0er” =
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Jacobian regularization for monotone networks

* NETWORK: Ag: RY — R with learnable parameters § € R” (e.g., convolutional kernels)
* TRAINING SET: Pairs of groundtruth/observations (Z¢, y¢)1<e<r, With (Ze, ye) € (RV)?

* TRAINING MINIMIZATION PROBLEM:
L

minimize Y || Ag(ye) — Te|® st (Vo € RY) \uin (Vo R, (7)) > —1
[25:5 —
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Jacobian regularization for monotone networks

* NETWORK: Ag: RY — R with learnable parameters § € R” (e.g., convolutional kernels)
* TRAINING SET: Pairs of groundtruth/observations (Z¢, y¢)1<e<r, With (Ze, ye) € (RV)?

* TRAINING MINIMIZATION PROBLEM:
L

minimize Y || Ag(ye) — Te|® st (Vo € RY) \uin (Vo R, (7)) > —1
[25:5 — 0

In practice one cannot enforce Amin (VSRZG (z)) = —1for all z € RN

g% How to compute Amin (VSRZG (z))?
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Jacobian regularization for monotone networks

* NETWORK: Ag: RN — RN with learnable parameters 6 € R” (e.g., convolutional kernels)
* TRAINING SET: Pairs of groundtruth/observations (Z¢, y¢)1<e<r, With (Ze, ye) € (RV)?
*x TRAINING MINIMIZATION PROBLEM:

L

minimize 3 1 Ao (ye) - Zel|*C min {1 + Auin (VR 3, (7)), 5}
R
=1
where ( > 0,e>0

© Muin(VRj, (o)) = o(Te) - Xmax(g(@)ld _ VSRA(@)) with 0(7) > Amax (V2 Ra(F0))

* Use Jacobian-vector product in Pytorch and auto-differentiation, combined with two power
iterations

* Can be solved using, e.g., SGD or Adam...
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Case of the Forward-Backward-Forward PnP algorithm
for monotone inclusion problems

Application to learning non-linear model approximations
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Monotone inclusion problem

MONOTONE INCLUSION PROBLEM: We want to
Find 7 € RY such that 0 € A(Z) + Oh(Z) + No(Z)
where

e C is a closed convex set of R
e h:RY - R proper Isc convex and continuously differentiable on C' C int(dom h)

e A monotone continuous operator defined on C'
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Monotone inclusion problem

MONOTONE INCLUSION PROBLEM: We want to
Find 7 € RY such that 0 € A(Z) + Oh(Z) + No(Z)

where

e C is a closed convex set of RN

e h:RN — R proper Isc convex and continuously differentiable on C' C int(dom h)

e A monotone continuous operator defined on C

Approximate operator A by a monotone continuous NN gg
Use a PnP version of the forward-backward-forward iterations [Tseng, 2000]
combined with an Armijo’s rule (to avoid cocoercive assumption on Ag)

Conclusion

27/38

NOTE: Most standard NNs are continuous, especially those that use non-expansive activation functions

So we “only” need to take care of the monotony property during training
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Proposed FBF PnP method

A. REPETTI et al.

Let 29 € C and (k)ken be a sequence in |0, o0
for k=0,1,... do

ax = Ag(x1) + Vh(ay)
2z = projo (e — ywak)
Trg1 = Proje (2 — yr(Ae(zk) + Vh(zk) — ax))
end for
ARMIJO-GOLDSTEIN RULE: Let o € ]0,+o0o[ and (3,0) €]0, 1[%, and define (7, = 0 3% )ren where

(Vk €N) iy = inf {z eN ‘7 =08, || Ag(zr) + Vh(z) — Ag(ar) — Vi(zi)|| < 0]z — s } .

Let ga be a monotone continuous NN.
Assume that there exists at least a solution Z to the inclusion 0 € Ay(Z) + Oh(Z) + Neo(Z)

Then (zj)ken converges to a such a solution Z € dom Ap.
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Learning non-linear model approximations: Application to semi-blind non-linear imaging

NON-LINEAR INVERSE PROBLEM: |y = F(Z) +w

o T € RY original unknown image and w € R™ realisation of an additive i.i.d. white Gaussian random
variable with zero-mean and standard deviation o > 0

J
o F:RY SRY: 2 %ZSg(ij)
j=1

S5: RY — RY: & = (2:)1<icn — (¥s(2:))1<i<n is the Hyperbolic tangent saturation function
defined as 15: R — R: g vy 2PCCZZDIHL yith § > 0

L; € RY*N are convolution operators, with motion kernels of size 9 x 9 (J = 1 or J = 5)
1.00 1 v
/,
0.75 ﬁ
= 0.50
E3
//

0.00 T 1 T T T T
-1.0-05 00 05 1.0 15 20
— 6=1 — 6=0.6 ——= y=X
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Remarks on the considered non-linear model

NON-LINEAR INVERSE PROBLEM: |y = F(%) 4+ w with F: RY - RY: z

&Ib—‘

- 7o

e Thereis !

e In practice F is difficult to handle, so approximations are considered:

J
‘ F(z) = % Jz:; Lz + 1T_5 (not necessarily monotone)
lin 0 .
o F"(z)=— Z L;x (not necessarily monotone)
Ja

~ Often § = 1 as unknown

- Both approximations necessitate to know (L;)1<j<.
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Remarks on the considered non-linear model

k‘l'—‘

NON-LINEAR INVERSE PROBLEM: |y = F(%) 4+ w with F: RY - RY: z

- 7o

e Thereis !

e In practice F is difficult to handle, so approximations are considered:
J
é 1-4 .
Ff(2) = 5 Jz; Lz + —~— (not necessarily monotone)
J
Z ;& (not necessarily monotone)

Jj=1

L)

Flin (a_;) S

e If 6 and/or (L;)1<;<s are unknown, one can learn approximations:

Linear approximation Fj" of F' (not necessarily monotone)
Monotone approximation Fy™" of F' (NN with monotone constraint)

Non-monotone approximation Fg°™ of F' (NN without monotone constraint)
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Simulation setting and compared methods

We consider two monotone inclusion problems.

DIRECT REGULARISED APPROACH: find 7 € RY such that 0 € Fy(Z) — y + oVr(Z) + No(2)
with o > 0, and r: RN — R is a smoothed TV regularisation

Use FBF-PnP algorithm with h(z) = —(y | z) and Ay = Fy + oVr

REMARK: Fy should be monotone to ensure convergence of the FBF-PnP iterations

REMARK 2: Fp could be either Fji", F°"  or Fpom



Introduction MMOs PnP with FNE NNs PnP with Monotone NNs Conclusion
00000 000 0000000000000 000000000 e00000 [o]e]

A. REPETTI et al. * LEARNING MONOTONE OPERATORS FOR COMPUTATIONAL IMAGING % 31/38

Simulation setting and compared methods

We consider two monotone inclusion problems.

DIRECT REGULARISED APPROACH: find 7 € RY such that 0 € Fy(Z) — y + oVr(Z) + No(Z)
with 0 > 0, and 7: RY — R is a smoothed TV regularisation

Use FBF-PnP algorithm with h(z) = —(y | ) and Ay = Fy + oVr

REMARK: Fy should be monotone to ensure convergence of the FBF-PnP iterations

LEAST-SQUARES REGULARIZED APPROACH:
find 2 € RN such that 0 € Fe',i"TFg( z)— F"“ y+ oVr(Z) + No(Z)
with 0 > 0, and 7: RN — R is a smoothed TV regularisation

Use FBF-PnP algorithm with h(z) = < Flin Ty | a:> and Ay = Fin" Fy + oVr

REMARK: F"" Fjy should be monotone to ensure convergence of the FBF-PnP iterations
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Training results: Testing the learned approximations (BSD68)

Filters  Noise Model MAE(y, Fy(z)) (x102)  min Amin (VS Fp(Z)) (x1072)
6 =1 for Ss
Fnon 1.5658 (£ 0.58) 1.67 >0
Epom 0.2932 (£ 0.11) —29.99
Otrain = 0 -9
Fpmon 0.6822 (4 0.25) 0.69 >0
J—1 Flin 2.1474 (+ 1.38) —24.69
N Fypon 1.1575 (£ 0.42) 1.10 > 0
nom —
o = 0.01 16 0.3020 (£ 0.11) 27.72
Fpmon 0.5351 (& 0.19) 1.13>0
Flin 2.1607 (+ 1.37) —25.87
Fnon 0.5272 (4 0.20) 1.18 >0
_ Fpom 0.2795 (£ 0.10) —22.06
Otrain — 0 Tmon
F} 0.6108 (& 0.22) 1.80 >0
J—5 Flin 2.1473 (+ 1.38) —13.86
Fpmon 0.9414 (4 0.34) 1.80 >0
Fpom 0.2714 (£ 0.09) —25.48
Otrain = 0.01 -9
Fmon 0.6591 (& 0.25) 1.64 >0
Flin 2.1594 (+ 1.37) —16.55
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Training results: Testing the learned approximations (BSD68)

Filters  Noise Model MAE(y, Fy(z)) (x102)  min Amin (VS Fp(Z)) (x1072)
6 = 0.6 for Ss
Fypon 1.2816 (£ 0.53) 1.91>0
ra = 0 Fpom 0.2376 (£ 0.09) —18.73
rem Fymon * 0.4311 (4 0.14) 0.37>0
Jo1 Flin 8.2009 (& 2.70) —42.79
Fypon 1.1689 (£ 0.45) 1.65 >0
B Fpom 0.2275 (£ 0.08) —23.35
Ftrain = 0.01 ﬁgmn . 0.4679 (+ 0.17) 0.54 > 0
Flin 8.1993 (£ 2.69) —43.18
Fjon 0.7720 (4 0.30) 1.52> 0
oram = 0 Fpom 0.1435 (£ 0.05) —17.38
raim Fgnon 0.4327 (& 0.14) 0.40 > 0
J—5 Flin 8.1920 (+ 2.70) —39.61
Fpmon 0.6867 (& 0.25) 0.66 > 0
Epom 0.1788 (£ 0.06) —19.04
Otrain = 0.01 29
Fnon * 0.4809 (4 0.15) 0.33>0
Fjin 8.1969 (&£ 2.70) —35.39
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Training results: lllustrations of learned approximations (J = 5,6 = 1)

y= F(Z) |- PSNR = 21.17 Ypiin = FIN(Z) - MAE = 0.037  y,1ia = Fj®(Z) - MAE = 0.037
(Amins Amas) = ( (8137)  (Amins Amax) = (009,000 (Rmin, Amax) = (- 0.11,0.99)

Yrpom = Fpo™(T) — MAE = 0.003 ypmon = Fj°"(Z) -~ MAE = 0.005 Ypmon = Fy(z) — MAE = 0.006
(Amins Amax) = ( ,1.01) (Amin, Amax) = (0.01,1.00) (Amins Amax) = (0.00,0.92)
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Training results: lllustrations of learned approximations (J = 5, = 0.6)

y = F(Z) |- PSNR = 17.33 Ypiin = FI%(Z) - MAE = 0.110  y1in = FJ"(Z) - MAE = 0.111
(Ammins Amas) = ( 15759) i Amax) = (- 0.09,1.00)  (Rnins Amax) = (077, 1.00)

yppom = F3o™(Z) = MAE = 0.009 ypmon = " (Z) = MAE = 0.009 yzmon = Fy(Z) — MAE = 0.004
6
(Amins Amax) = ( ,0.63) (Amins Amax) = (0.03,0.61) (Amins Amax) = (0.00,0.56)
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Simulation results: PnP restoration with 0 = 0.01 (BSD68)
Problem Operator Ftrain = 0 Ttrain = 0.01

PSNR SSIM PSNR SSIM
(J,8) = (1,1) Direct Fgon 24.56(£3.96) 0.80(£0.11) 24.58(£4.26) 0.80(£0.11)
Least-squares  Fj"o" 26.32(+4.14) 0.85(£0.04) | 28.31(%3.66)  0.89(+0.04)
Least-squares  Fj» 25.59(£3.14) 0.87(£0.07) 25.59(£3.11) 0.87(£0.07)
(J,8) = (5,1) Direct Fgnon 27.46(£4.31) 0.87(£0.08) 26.96(£4.13) 0.86(£0.08)
Least-squares ﬁé“o“ 28.31(+4.32) 0.89(£0.06) | 28.33(%+4.33) 0.89(40.06)
Least-squares  Fj» 25.21(£3.29) 0.86(=£0.08) 25.23(£3.32) 0.86(=£0.08)
(J,8) = (1,0.6) Direct Fgon 25.17(£3.99) 0.81(£0.10) 25.14(£3.99) 0.81(£0.10)
Least-squares  Fgo" 25.33(£3.61) 0.81(+£0.07) | 26.09(+4.02)  0.83(+0.07)
Least-squares  Fj» 18.77(£2.71) 0.77(£0.12) 18.77(£2.71) 0.77(£0.12)
(J,8) = (5,0.6) Direct Fgnon 26.43(+£4.23)  0.84(+0.09) | 26.63(+4.32)  0.84(=+0.09)
Least-squares Fgmon 24.75(+4.33) 0.77(+0.13) 24.73(+4.32) 0.77(+£0.13)
Least-squares  Fp™ 18.40(4:2.74) 0.72(40.14) 18.40(42.74) 0.72(=40.14)
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Simulation results: PnP restoration with o = 0.01, J =5, § = 1 (visual)

T e (24.67,093) T e~ (24.69,0.93) T e~ (22.77,0.75) Tppn — (22.79,0.75)

Otrain = 0 Otrain = 0.01 Otrain = 0 Otrain = 0.01
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Simulation results: PnP restoration with o = 0.01, J =5, § = 1 (visual)

y — (23.96,0.89) y - (21.11,0.65)

EF;‘“O“ - (31.59,0.93) :/fpénon - (30.98,0.93) fpénou —(24.95,0.80) EFénon - (24.67,0.80)
Otrain — 0 Ttrain — 0.01 Otrain — 0 Otrain — 0.01
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Simulation results: PnP restoration with o = 0.01, J =5, § = 1 (visual)

<
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©
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o
e
o
Sl

)

Tgmon — (31.84,0.94) Tpmon — (32.10,0.94) Tpmon — (25.75,0.83) Fpmon - (25.72,0.83)

Otrain = 0 Otrain = 0.01 Otrain = 0 Otrain = 0.01
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Simulation results: PnP restoration with o = 0.01, J =5, § = 1 (visual)

%|.1073 521073
> N
:F 1074 H
10> 10-5
0 150 300 450 600 750 0 200 400 600 800 1000

- Fg';""" = Otrain = 0.0 - f?'e""" = Otrain = 0.0 — Flem = Otrain = 0.0
—— F§°" = Otrain = 0.01 — ,?gwn — Otrain = 0.01 — ,?Iem — Otrain = 0.01
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Simulation results: PnP restoration with 0 = 0.01, J =5, 6 = 0.6
(visual)

y - (17.30,0.85)

& -~
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=
o
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=

Zpn — (17.40,0.86) Zpn — (17.40,0.86) T — (16.42,0.54) Tpn — (16.41,0.54)

Otrain = 0 Oirain = 0.01 Otrain = 0 Oirain = 0.01
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Simulation results: PnP restoration with 0 = 0.01, J =5, 6 = 0.6
(visual)

y — (17.30,0.85) y — (16.27,0.54)

P

:EFmon - (30.64,0.92) :I:Fmon - (30.59,0.92) :l:Femon - (24.12,0.77) ﬁpénon - (24.21,0.78)

. N L N N1 L N - N N1
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Simulation results: PnP restoration with 0 = 0.01, J =5, 6 = 0.6
(visual)

T 7mon — (28.91,0.89) % 7mon — (28.87,0.89) F zmon — (22.55,0.7) T zmon — (22.54,0.7)
0 0 0 o

Otrain = 0 Otrain = 0.01 Otrain = 0 Oirain = 0.01
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Simulation results: PnP restoration with 0 = 0.01, J =5, 6 = 0.6
(visual)
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|1Xk+1 = Xkl |2
Ivll

|1Xk+1 = Xkl |2
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107> 107>
0 200 400 600 800 1000 0 200 400 600 800 1000

— F§ = 0uwin=00  —— F§"=0Oain=0.0  —— F}’= Otrain=0.0
— Fg" = 0Owin=001 —— FP"—0n=0.01 —— Fi" = Orain = 0.01
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Conclusion

* Plug-and-play algorithms with FNE NNs and monotone NNs

e Use any proximal algorithm whose proof holds for MMOs
e Ensures convergence of the iterates
e Characterisation of the limit point as solution to monotone inclusion problem

* Training methods for learning FNE NNs and monotone NNs

e Use Jacobian-vector product in Pytorch and auto-differentiation
e Combine with power iterations to compute eigenvalues

Use monotone learning method to learn optimal maps?

Other algorithms?
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[ Thank you for your attention ]

J.-C. Pesquet, A. Repetti, M. Terris, and Y. Wiaux. Learning maximally monotone operators for image
recovery, SIAM Journal on Imaging Sciences, 14(3):1206-1237, August 2021.

C. S. Garcia, M. Larcheveque, S. O'Sullivan, M. Van Waerebeke, R. R. Thomson, A. Repetti, and J.-C.
Pesquet. A primal-dual data-driven method for computational optical imaging with a photonic lantern,
PNAS Nexus, 3(4):164, April 2024,

Younes Belkouchi, J.-C. Pesquet, A. Repetti, and H. Talbot. Learning truly monotone operators with
applications to nonlinear inverse problems, SIAM Journal on Imaging Sciences, 18(1), 735-764, 2025.
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[ Approximating the resolvent of an MMO ]
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Feedforward neural networks

r

Let (Hm)o<msnm be real Hilbert spaces such that Ho = Hy = H.

A feedforward NN having M layer and both input and ouput in H can be seen as a composition
of operators:

Q=Ty--Th
where (Vm € {1,...,M}) Tun: Hmo1 = Hm: 2= Ry (Wia + byy).
For each layer m € {1,...,M}:
e R,: Hm — Hnis a nonlinear activation operator

e Wy Him1 — Hm is a bounded linear operator corresponding to the weights of the network

e b, € H,, is a bias parameter vector
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Feedforward neural networks

rLet (Hm)ogmsm be real Hilbert spaces such that Ho = Hy = H.

A feedforward NN having M layer and both input and ouput in H can be seen as a composition
of operators:

Q P— TM .. .Tl
where (Ym € {1,...,M}) Tun: Hmo1 = Hm: © = Rpy(Wina + byy,).

NoTATION: Nz(RY) denotes the class of nonexpansive feedforward NNs
e with inputs and outputs in RY
e built from a given dictionary F of activation operators
e F contains the identity operator, and the sorting operator performed on blocks of size 2

In other words, a network in N=(R™) can be linear, or it can be built using max-pooling with
blocksize 2 and any other kind of activation function provided that the resulting structure is 1-
Lipschitz.
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Stationary MMOs

Let (H)1<k<i be real Hilbert spaces.

An operator A defined on the product space space H = Hi X --- X H is a stationary MMO if
its resolvent J4: H — H satisfies

(Vke{1,...,K}) (31, € B(H,Hr) (3 € S+(H) such that

(V(z,y) € H?) Mk (2Ja(x) — 2 —2Ja(y) +9) 1> < (z —y | Q(z —y))
with

K
ST, =1d and || 20, QkH <1
k=1

\

REMARK: If A is a stationary MMO, then it is an MMO

B(H,H},) denotes bounded linear operators from H to Hj,
S (H) denotes self-adjoint nonnegative operators from H to H
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Stationary MMOs: Examples

* A=U*BU is a stationary MMO where

e U:H — H is a unitary linear operator

o (Vo= (") €H) B(x) = Bi(zM) x ... x Br(x5)),
with (Vk € {1,...,K}) By: Hy, — Hx an MMO

* O(goU) is a stationary MMO where

o (Vo= (zM)icherx €H) gla) =, wr(@®), with (Vk € {1,...,K}) ¢4 € To(R)
o U € REXX orthogonal

% If Ais a stationary MMO, then A~! as well
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Approximate MMOQO's resolvents with NNs

Let H =R and A: H — 2™ be a stationary MMO.
For every compact set S C H and every € € |0, 400, there exists a NN

Qe € Nx(H) such that A, = 2(Id + Q€)71 — Id satisfies:
x Forevery x € S, |[Ja(z) — Ja_(x)]] <e
* Let z € H and let y € A(x) be such that z +y € S. Then

(Bze € H)(Bye € Ac(ae)) o —we| < eand [ly —y[[ < e
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Approximate MMOQO's resolvents with NNs

Let H =R and A: H — 2™ be a stationary MMO.
For every compact set S C H and every € € |0, 400, there exists a NN

Q. € Nz(H) such that A, = 2(Id + QE)71 —Id satisfies:
* Foreveryx € S, || Ja(z) — Ja_ (2)] <€

* Let z € H and let y € A(x) be such that z +y € S. Then

(Bze € H)(Bye € Ac(ae)) o —we| < eand [ly —y[[ < e

\

REMARK:

* Same results hold if A is a convex combination of stationary MMOs

* Due to the firmly nonexpansive condition on the NN, the results are less accurate than standard
universal approximations [Hornik et al., 1989][Leshno et al., 1993]

e.g., guaranteeing arbitrary close approximation to any continuous function with a network
having only one hidden layer

5/16
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[ Taining procedure ]
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Training procedure

Let D € N* be the batch size, and K € N* be the number of training iterations
Fork=1,...,K
ford=1,...,D
Select randomly ¢ € {1,...,L}
Drawn randomly wg ~ N(0,1) and 04 ~ U([0, 1])
Yd = T¢ + owq _
Za = aT¢ + (1 — 0a)Jo, (ya)
ga = Vo@u(0r)
[ Ok1 = Adam(55 357, ga,6r)

REMARKS:
* Use of power method to compute |[VQg(x)]|, for a given image x € H
o Necessitate to apply VQs(z) and VQg ()" (use automatic differentiation)

e Due to memory limitations, all our experiments will be performed with 5 iterations of the power
method.
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Training procedure

Let D € N* be the batch size, and K € N* be the number of training iterations
Fork=1,...,K
ford=1,...,D
Select randomly ¢ € {1,...,L}
Drawn randomly wg ~ N(0,1) and 04 ~ U([0, 1])
Yd = T¢ + owq _
Za = aT¢ + (1 — 0a)Jo, (ya)
ga = Vo@u(0r)
[ Ok1 = Adam(55 357, ga,6r)

REMARKS:
* GANSs (see e.g., [Gulrajani et al., 2017]): Use similar regularization to constrain the gradient norm
of the discriminator

* [Hoffman et al., 2019]: Loss regularized with the Froebenius norm of the Jacobian

* RealSN [Ryu et al,, 2019]: Compute the Lipschitz constant of each convolutional layer (with 1
iteration of power method)
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Image deblurring
using forward-backward PnP algorithm
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Inverse problem

INVERSE PROBLEM: z= HT +e
% T € RY original unknown image
H € RY*N blur operator
e € RY realization of Gaussian random noise A/ (0, v)
z € RY observations

* ok o

BLUR KERNELS:

DATASETS:
e Training dataset: 50000 test images from the ImageNet dataset (randomly split in 98% for
training and 2% for validation)
o Grayscale test dataset: BSD68 dataset (and a subsample of 10 images referred as BSD10)
e Colour test dataset: BSD500 test set
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Comparison with other PnP methods: Grayscale images

SETTING:
e Deblurring problem: T from BSD10 test set, v = 102, blur 1-8
e Trainingg A=10"% 0c=9x10"3
e PnP-FB algorithm: v =1.99

COMPARISON WITH:
+ PnP-FB with different denoiser operators:

e RealSN
e BM3D
e DnCNN

* FB with proximity operators of:

e (1-norm composed with a sparsifying operator consisting in the concatenation of the first
eight Daubechies wavelet bases
e total variation (TV) norm
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Comparison with other PnP methods: Grayscale images

@ Evaluate ¢ = |2k — zp—1||/||xo]|, for (zx)ren generated from PnP-FB

Cn
1073[ |
1079 il |
10_77 L L L | L L L L L L
300 600 900 300 600 900 300 600 900
PnP FB iteration n PnP FB iteration n PnP FB iteration n
(a) BM3D (b) RealSN (c) Proposed
denoiser kernel convergence
(@ () (c) (d (9 () (g (h)
Observation 23.36 22.93 2343 19.49 23.84 19.85 20.75 20.67
RealSN 26.24 26.25 26.34 25.89 25.08 25.84 24.81 23.92 v
ProX,, jlwt.||; 29.44 29.20 29.31 28.87 30.90 30.81 29.40 29.06 v
1
ProX v II- Ity 29.70 29.35 29.43 29.15 30.67 30.62 29.61 29.23 v
DnCNN 29.82 29.24 29.26 28.88 30.84 30.95 29.54 29.17 X
BM3D 30.05 29.53 2993 29.10 31.08 30.78 29.56 29.41 X
Proposed 30.86 30.33 30.31 30.14 31.72 31.69 30.42 30.09 v
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Comparison with other PnP methods: Grayscale images

@ Evaluate ¢ = |2k — zp—1||/||xo]|, for (zx)ren generated from PnP-FB

Cn
1073[ |
1079 il |
10_77 L L L | L L L L L L
300 600 900 300 600 900 300 600 900
PnP FB iteration n PnP FB iteration n PnP FB iteration n
(a) BM3D (b) RealSN (c) Proposed
denoiser kernel convergence
(@ () (c) (d (9 () (g (h)
Observation 23.36 22.93 2343 19.49 23.84 19.85 20.75 20.67
RealSN 26.24 26.25 26.34 25.89 25.08 25.84 24.81 23.92 v
ProX,, jlwt.||; 29.44 29.20 29.31 28.87 30.90 30.81 29.40 29.06 v
1
ProX v II- Ity 29.70 29.35 29.43 29.15 30.67 30.62 29.61 29.23 v
DnCNN 29.82 29.24 29.26 28.88 30.84 30.95 29.54 29.17 X
BM3D 30.05 29.53 2993 29.10 31.08 30.78 29.56 29.41 X
Proposed 30.86 30.33 30.31 30.14 31.72 31.69 30.42 30.09 v
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Learning FNE NNs — remarks
0000000

A. REPETTI et al.

Comparison with other PnP methods: Color images

SETTING: (same as in [Bertocchi et al., 2020])
e Deblurring problem: T from BSD500 test set, with

G A blur9, v =8x10"3
M. A blur8, v =102
M. B blur3, v =102

IS blur 10, v =102
e Training: \ = 1075, 0 =7x 1073 for G. A, and 0 =9 x 1073 for M. A, M.B and S

e PnP-FB algorithm: v =1.99

COMPARISON WITH:
* Variational method from [Bertocchi et al., 2020]

% PnP-PDHG [Meinhardt et al., 2017]
* PnP-FB with BM3D
% PnP-FB with DnCNN
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Comparison with other PnP methods: Color images

Non convergent Convergent
[[PDHG BM3D [DnCNN| [IVAR [Iproposed

32 0oF
30|
£ Zos)
Zos| z
w6l 0.7}
G.A MA MB S G.A MA MB S
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Comparison with other PnP methods: Color images

Motion A Gaussian A Square

25.45,0.464)
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Comparison with other PnP methods: Color images

Motion A Gaussian A Square

—

(27.05,0.772) (30.05,0.897)

(27.43,0.675)
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Comparison with other PnP methods: Color images

Motion A Gaussian A Square

BM3D

(20.73,0.834)  (29.32,0.891) (26.97,0.611)
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Comparison with other PnP methods: Color images

Motion A Gaussian A Square

== =<

(21.39,0.888)

(30.96,0.911) (27.53,0.669
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Comparison with other PnP methods: Color images

Motion A Gaussian A Square

= '-.,,f";".
(28.10,0.733)

(31.89,0.901) (31.61,0.921)
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Simulated COIL data

M = 1089 patterns (121 individual cores x 9 rotations)

input SNR 30dB

Use 50 images with geometric patterns, of size N = 377 x 377
Fix ¢ = 50 for data-fidelity /5 bound

AVERAGE RESULTS ON THE 50 IMAGES:

v PSNR (dB) SSIM GPU (sec.) CPU (sec.)
5 37.81(£2.49) 0.698(£0.012) 13.0(£1.6) 70.5(+8.0)
10 37.61(£2.08) 0.687(£0.024) 17.0(£4.3) 94.2(424.8)
20 36.81(£2.42) 0.672(£0.022) 16.4(+4.9) 92.3(429.0)
SARA-COIL 30.72(+1.38) 0.544(£0.023) - 98.9(+11.8)
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Simulated COIL data results

13/16

Ground truth SARA-COIL

PhP-0c=5 PnP-0=10 PnP-0=20
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[ Learning monotone operators — Remarks ]
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Algorithm 3.2 Training a monotone network Fy

1: Input:
® Fy, Nepochs, B, A >0 > Training parameters
o L, P, Dirain > Loss, penalization and training set
o Optimizer step: O : (6, g) — 6+ > e.g., Adam, SGD, etc.
2: £+ 0

3: for j =1,..., Nepochs do
4: for each batch B = {(zs,ys) }1<6<B C Dirain of size B do

5: Computational graph related to the loss and the penalization:

6: bo « realization of discrete random uniform variable in {1,..., B}

7 v « realization of random uniform variable in [0, 1]

8: Tpy < vv, + (L — v)yp,

9: bz 0 L0 L(Fy(ay), yp) + EP(S, T, > Use Algorithm 3.1
10: Gradient computation and optimizer step:

11: g8(0) € 0LB(0)

12: 0« 0(8,gs(0))

13: end for

14: E—E+ AL > Increase penalization parameter
15: end for

16: Output: Fy
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Algorithm 3.1 Computation of ,\min(J‘}% ()

1: Input:
® Rp,, T € Dpenal > Neural network model and data
® Niter > Parameter

2: Disable auto-differentiation

3: Computation of p > XmﬂX(Jing (@)):

4 ug < realization of N'(0,1d)
5: for k=1,..., Niter do

Ty, @
& Ukt =
7 end for .o
8: Choose p > Ui Vi, (z:ukﬂ

[er=H

9: Computation of the ei t iated with X = Amax (p1d _Jiip,, (@)):
10: o 4 realization of N'(0,1d)
11: for k=1,..., Niter do

(P1a = 35, @)ow
12 Ukt = T it
13: end for

14: Enable auto-differentiation
15: Computation of x:
D1 (P1 = T @) nipepn

Moxyger+113

16: X=

17: return p— X ~ )\min(JizFG (2))
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