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Intro



Dataset Distillation: what and why?

Imagine this scenario:

• You have a big dataset.

• You need to train a lot of models.
• You can take a small performance hit as long as it trains quickly.

How?

Normal Big data Good models
optimiser

DD Small data Almost good models
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How?

Problem: find a small surrogate dataset, such that training on it
gives performance similar to training on the whole dataset

good
performance

Intuition: you want the most important data.

Main acceleration: since your surrogate dataset is small, you train
faster.
Two main archetypes:

1. Bi-level approaches
• Based on bi-level optimisation

2. Disentangled approaches
• Based on approximation with empirical distributions
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Bi-level approaches

Dataset distillation is:

• Optimise over the distilled dataset S : (Outer loop)
• such that when you train on S , (Inner loop)
• you get good performance. (Test error)

argmin
S

TestError( argmin
θ

TrainingLossS(θ))

Limitations

1. Computational scaling
2. Poor mathematical interpretation
3. Questionable architecture generalisation
4. No mathematical guarantees
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Some examples of what people do

argmin
S

TestError(argmin
θ

TrainingLossS(θ)) (DD)

Table 1: Test accuracy with 10 images per class.

Dataset Original

GM DM MTT

CIFAR-10 84.8

44.9 48.9 65.3

CIFAR-100 56.2

25.3 29.7 40.1
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argmin
S

TestError(argmin
θ

TrainingLossS(θ)) (DD)

Gradient matching: replace the (intractable) training loss minimiser
with a normal training regime

argmin
S

TestError(Train_N_EpochsS(θ)) (GM)
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Some examples of what people do

Distribution matching: match the distributions of the synthetic S
and the training T after passing through randomly initialised neural
networks

• Inspired by maximum mean discrepancy of the “RKHS of neural
networks”

argmin
S

Eθ∼pθ‖
1
|T |

∑
x∈T

ψθ(x)−
1
|S|
∑
x∈S

ψθ(x)‖2 (DM)
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Some examples of what people do

Matching training trajectories: minimise the parameter distance
when training with S vs full training T

argmin
S

Eθ0∼pθ

T−M∑
t=1

‖θSt+N − θTt+M‖2

‖θTt+M − θTt ‖2
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Some examples of what people do

Matching training trajectories: minimise the parameter distance
when training with S vs full training T

• Requires pretraining ”expert models” from many initialisations

argmin
S

Eθ0∼pθ

T−M∑
t=1

∥θSt+N − θTt+M∥2

∥θTt+M − θTt ∥2

Table 1: Test accuracy with 10 images per class.
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Synthetic images from bi-level methods

Figure 1: What are these? Directly optimised in image space.
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Feature distribution after distillation

Figure 2: Distribution of synthetic images in CIFAR-10 [Zhao and Bilen ’23].

Clustering effect?

• Features from distribution matching are “more uniform” than
gradient matching.

Seems like dealing with the data is better than forcing a particular
architecture.
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Motivation

If distribution matching is “like clustering” ?−→ use clustering for DD?

Yes!

Addressing the limitations of the bi-level approaches:

1. Computational scaling
• Removes the inner or outer problem.
• Uses only one expert model.

2. Poor mathematical interpretation
• As a distribution approximation problem.

3. Questionable architecture generalisation
• Will be architecture independent.

4. No mathematical guarantees
• Using distributional convergence.

5. Strange looking distilled images
• Force the distilled images to look good using generative models.
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“Disentangled dataset distillation”

How to use clustering for DD?

• Direct clustering of the big images does not work. (curse of
dimensionality)

How about using an encoder-decoder structure? Then you can
cluster in the latent space, and you have generative capabilities!
What you want: latent diffusion models

• Decoders given by conditional diffusion models
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Dataset Distillation by Clustering

Algorithm: you have a encoder-decoder pair (E ,D).

1. Take your entire training dataset T , and encode it to get a
dataset of latent variables Z = E(T )

2. Cluster your latent variables in each class, say with k-means.
You get some “centroid” latents in each class Ẑ .

3. Decode these clustered latents⇒ Synthetic dataset S = D(Ẑ).

S = decode ◦ cluster ◦ encode(T )
Oops, someone has done this before [Su et al., CVPR’24].
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Dataset Distillation by Clustering

Data distribution
µ0

Latents distribution
µT

Encode

Cluster

Distilled distribution
ν0

Latents cluster distribution
νT

Decode
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A closer look: decoding

3. Decode these clustered latents S = D(Ẑ).

What is the decoding the clusters actually doing?

A look at diffusion models.

11



Generation from latents

Data distribution
µ0

Latents distribution
µT

(1)

Clustering
(2)

Distilled distribution
ν0

Latents cluster distribution
νT

(3)
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Consistency

Proposition
For the VESDE/VPSDE and any initial data distribution µ ∈ P2(Rd)

with compact support bounded by R > 0, the backwards diffusion
process is well posed. Suppose that there are two distributions µT, νT
at time T that undergo the reverse diffusion process (with fixed initial
reference measure µ) up to time t = δ ∈ (0, T) to produce
distributions µδ, νδ . There exists a (universal explicit) constant
C = C(δ, T,R,d) ∈ (0,+∞) such that if f : Rd → Rn is an L-Lipschitz
function, then the difference in expectation satisfies

‖Eµδ
[f]− Eνδ

[f]‖ ≤ CLW2(µT, νT).

Proof: basically stochastic Gronwall’s inequality.

13



Consistency

Proposition (informal)

Suppose you have a bounded data distribution µ0, say of images.
Then you pass it through your forward stochastic process (noising),
up to µT. If you have another distribution νT that approximates µT,
then after passing both through the reverse stochastic process
(generation), your generated distributions νδ will approximate µδ .

Proposition (informal)

Suppose you have a bounded data distribution µ0, say of images.
Then you pass it through your forward stochastic process (noising),
up to µT. If you have another distribution νT that approximates µT,
then after passing both through the reverse stochastic process
(generation), your generated distributions νδ will (weakly)
approximate µδ .

If you are close in the latent space, then you are close after
decoding/generation.

Consequences:

• Gradient steps when training with the distilled dataset are
automatically similar to those on the full training dataset
(supposedly).

• No need to enforce through training!
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An even closer look: clustering

2. Cluster your latent variables in each class, say with k-means.
You get some “centroid” latents in each class Ẑ .

What is clustering actually doing?

16



Clustering is optimal quantisation!

Definition
For a probability measure µ, the quadratic distortion of a set of
points {x1, ..., xK} is the µ-average distance to the set:

G : (x1, ..., xK) 7→
∫
Rd

min
i
‖x− xi‖2 µ(dx) = EX∼µ[min

i
‖X− xi‖2]. (1)

The optimal quantisation of µ (at level
K) is a set of points {x1, ..., xK} that mini-
mizes the quadratic distortion.

Fact: there is a 1-1 correspondence
with optimal quantisers {x1, ..., xK} and
Wasserstein-minimisers with finite sup-
port.

Example quantisation of
a Gaussian

17



Relating optimal quantisers to Wasserstein minimisers

Proposition
For a set of points {x1, .., xK}, the empirical measure ν =

∑
i wiδ(xi)

minimisingW2(µ, ν) satisfying supp ν ⊂ {x1, .., xK} is given by
ν =

∑
i µ(Ci)δ(xi).1

• Sets of points↔ approximating measures (automatically)
• Rates (Zador’s theorem): W2(νK, µ) ∼ O(K−1/d) as number of
points K→∞.

1Ci ⊂ Rd are the Voronoi cells, set of points closest to xi .

18



Clustering is optimal quantisation!

Guess what is an algorithm for solving optimal quantisation?

k-means clustering!

2

Produces {x1, ..., xK}.

Previous approach: take the approximating measure to be

ν =
1
K

K∑
i=1

δ(xi) (≈ 1
|T |

∑
u∈T

δ(u) ≈ µ)

Key: finding {xi} is not enough! Actually, we need to optimise for
wi > 0, xi ∈ Rd in

ν = argmin
w,x

W2

( K∑
i=1

wiδ(xi), µ
)
.

2Actually, a slight modification thereof: the competitive learning vector quantisation
(CLVQ) algorithm.

19



Clustering is optimal quantisation!

Guess what is an algorithm for solving optimal quantisation?
k-means clustering!2 Produces {x1, ..., xK}.

Previous approach: take the approximating measure to be

ν =
1
K

K∑
i=1

δ(xi) (≈ 1
|T |

∑
u∈T

δ(u) ≈ µ)

Key: finding {xi} is not enough! Actually, we need to optimise for
wi > 0, xi ∈ Rd in

ν = argmin
w,x

W2

( K∑
i=1

wiδ(xi), µ
)
.

2Actually, a slight modification thereof: the competitive learning vector quantisation
(CLVQ) algorithm.

19



A tiny modification

So we want smallW2 distance to give good approximation of the
latents νT ≈ µT:

ν = argmin
w,x

W2

( K∑
i=1

wiδ(xi), µ
)
.

How do we get the wi ≈ µ(Ci)?

Answer: k-means does this automatically! Produces online
approximations to µ(Ci).

We get better approximation (in measures) with no additional
computation.
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Why do we need the coefficients?

If wi are uniform wi ≡ 1/K, then this is the Wasserstein barycentre
problem (as opposed to optimal quantisation)3

Figure 3: The Wasserstein distanceW2 is higher for the Wasserstein
barycentre. Courtesy of 3.

3[Cuturi & Doucet ICML ’14].
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Generation from latents

Data distribution
µ0

Latents distribution
µT

(1)

Clustering
(2)

Distilled distribution
ν0

Latents cluster distribution
νT

(3)

We have the optimal quantisers νT ≈ µT from (2), which implies
ν0 ≈ µ0 from (3).
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Putting everything together

Algorithm: you have a encoder-decoder pair (E ,D).

1. Take your entire training dataset T , and encode it to get a
dataset of latent variables Z = E(T )

2. Cluster your latent variables in each class, say with k-means.
You get some “centroid” latents in each class Ẑ , and some
corresponding weights W = {wz}z∈Ẑ .

3. Decode these clustered latents S = D(Ẑ).
4. When training with the distilled dataset (S,W), multiply the
gradients of each training point with the corresponding weight.

T 7→
1
Z 7→

2
(Ẑ,W) 7→

3
(D(Ẑ),W) = (S,W)

23



Putting everything together

Algorithm: you have a encoder-decoder pair (E ,D).

1. Take your entire training dataset T , and encode it to get a
dataset of latent variables Z = E(T )

2. Cluster your latent variables in each class, say with k-means.
You get some “centroid” latents in each class Ẑ , and some
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Experiments

ImageNet-1K: 1.2M images, 1000 classes, 150GB size.
Bi-level approaches: not possible.

• Previous maximum on 100K 128× 128 images split into 200 classes,
∼ 600MB size.

• Already requires 80GB of GPU memory for 10 images per class.

24



Experiments

Comparing the addition of the k-means weights:

IPC k-means weights? ResNet-18 ResNet-50 ResNet-101
7 27.9 33.5 34.210
3 33.1 34.4 36.7
7 55.2 62.4 63.450
3 56.2 62.5 63.6
7 59.3 65.4 66.5100
3 60.1 65.9 66.7
7 62.6 67.8 68.1200
3 63.4 68.0 68.6

Table 2: Dataset distillation test accuracy without and with the k-means
weights. Adding weights makes it uniformly better.
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Comparing against other methods

Table 3: Comparison of top-1 classification performance on the ImageNet-1K
dataset for baselines versus the proposed DDOQ method at various IPCs. We
observe that DDOQ outperforms the previous SOTA method D4M, due to the
addition of weights to the synthetic data. The maximum performance for all
methods should be 69.8 as the soft labels are computed using a pre-trained
ResNet-18 model.

IPC Method ResNet-18 ResNet-50 ResNet-101 IPC Method ResNet-18 ResNet-50 ResNet-101

10

TESLA 7.7 - -

50

SRe2L 46.8±0.2 55.6±0.3 60.8±0.5
SRe2L 21.3±0.6 28.4±0.1 30.9±0.1 CDA 53.5 61.3 61.6
RDED 42.0±0.1 - 48.3±1.0 RDED 56.5±0.1 - 61.2±0.4
D4M 27.9 33.5 34.2 D4M 55.2 62.4 63.4
DDOQ 33.1±0.60 34.4±0.99 36.7±0.80 DDOQ 56.2±0.07 62.5±0.24 63.6±0.13

100

SRe2L 52.8±0.3 61.0±0.4 62.8±0.2

200

SRe2L 57.0±0.4 64.6±0.3 65.9±0.3
CDA 58.0 65.1 65.9 CDA 63.3 67.6 68.4
D4M 59.3 65.4 66.5 D4M 62.6 67.8 68.1
DDOQ 60.1±0.15 65.9±0.15 66.7±0.06 DDOQ 63.4±0.08 68.0±0.05 68.6±0.08
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What do the weights look like?

10 2

10 1

Figure 4: Example distilled images of the “jeep” class in ImageNet-1K along
with their k-means weights. There is little to no features that can be used to
differentiate the low and high weighted images, mainly due to the high
fidelity of the diffusion model. However, the weights are indicative of the
distribution of the training data in the latent space of the diffusion model.
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Summary

1. Dataset distillation: turning big data into small data
2. By thinking a bit, we get

i) ... rid of any bi-level formulations;
ii) Theoretical perspective as to why clustering-style methods work
iii) State of the art performance for free

What we really use/assume:

1. Generative (diffusion) models as implicitly modelling the
underlying data distribution (model expressiveness/trainability)

2. Faithfulness of data distribution↔ latent space mapping
(manifold hypothesis)
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Appendix



Generalisation

Table 4: Generalization performance.

Teacher Network Student Network

ResNet-18 MobileNet-V2 EfficientNet-B0 Swin-T

ResNet-18 D4M 55.2 47.9 55.4 58.1
DDOQ 56.2 52.1 58.0 57.4

MobileNet-V2 D4M 47.6 42.9 49.8 58.9
DDOQ 47.7 45.6 52.5 56.3

Swin-T D4M 27.5 21.9 26.4 38.1
DDOQ 28.5 24.1 29.3 36.0



CLVQ

Algorithm 1: CLVQ

Data: initial cluster centers x(0)1 , ..., x(0)K , step-sizes (γi)i≥0, i← 0
Initialize weights w = (w1, ...,wK) = (1/K, ..., 1/K);
while not converged do

Sample Xi ∼ µ;
Select “winner” kwin ∈ argmin1≤k≤K ‖Xi − x

(i)
k ‖;

Update x(i+1)k ← (1− γi)x(i)k + γiXi if k = kwin, otherwise
x(i+1)k ← x(i)k ;
Update weights wk ← (1− γi)wk + γi1k=kwin ;
i← i+ 1;

end
Result: quantization νK =

∑K
i=1 wiδ(x∗i )
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