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Problem: find a small surrogate dataset, such that training on it
gives performance similar to training on the whole dataset
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Bi-level approaches

Dataset distillation is:

- Optimise over the distilled dataset S: (Outer loop)
- such that when you train on S, (Inner loop)
- you get good performance. (Test error)

arg min TestError( arg min TrainingLossg(0))
s o
Limitations

1. Computational scaling

2. Poor mathematical interpretation

3. Questionable architecture generalisation
4. No mathematical guarantees
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Some examples of what people do

arg min TestError(arg min TrainingLossg(6)) (DD)
S 0

Gradient matching: replace the (intractable) training loss minimiser
with a normal training regime

arg min TestError(Train_N_Epochsg(6)) (GM)
S

Table 1: Test accuracy with 10 images per class.

Dataset ~ Original GM

CIFAR-10 84.8 449
CIFAR-100 56.2 253
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Some examples of what people do

Distribution matching: match the distributions of the synthetic §
and the training T after passing through randomly initialised neural
networks

- Inspired by maximum mean discrepancy of the “RKHS of neural
networks”

. 1 2
argsmlnngngm;ll)e( 5] Zwe )l (DM)

XeS

Table 1: Test accuracy with 10 images per class.

Dataset Original  GM DM

CIFAR-10 84.8 449 489
CIFAR-100 56.2 253 297




Some examples of what people do

Matching training trajectories: minimise the parameter distance
when training with S vs full training 7
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Some examples of what people do

Matching training trajectories: minimise the parameter distance
when training with S vs full training 7

- Requires pretraining "expert models” from many initialisations

0 [% 2
argmlnEgoNpg E %
t=1 t+M Ut H

Table 1: Test accuracy with 10 images per class.

Dataset Original  GM DM MTT

CIFAR-10 84.8 449 489 653
CIFAR-100 56.2 253 29.7 401




Synthetic images from bi-level methods

o

Guinea Pig Goose Guacamole Hourglass German Shepard

Figure 1: What are these? Directly optimised in image space.



Feature distribution after distillation

Figure 2: Distribution of synthetic images in CIFAR-10 [Zhao and Bilen '23].

Clustering effect?

- Features from distribution matching are “more uniform” than
gradient matching.

Seems like dealing with the data is better than forcing a particular
architecture.
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If distribution matching is “like clustering” % use clustering for DD?
Yes!
Addressing the limitations of the bi-level approaches:

1. Computational scaling
- Removes the inner or outer problem.
- Uses only one expert model.
2. Poor mathematical interpretation
- As a distribution approximation problem.
3. Questionable architecture generalisation
- Will be architecture independent.
4. No mathematical guarantees
- Using distributional convergence.
5. Strange looking distilled images
- Force the distilled images to look good using generative models.
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“Disentangled dataset distillation”

How to use clustering for DD?

- Direct clustering of the big images does not work. (curse of
dimensionality)

How about using an encoder-decoder structure? Then you can
cluster in the latent space, and you have generative capabilities!

What you want: latent diffusion models
- Decoders given by conditional diffusion models

Forward SDE (data — noise)

@ f(x,t)dt + g(t)dw —)@
.i ‘i F? .

- sci)‘re fun
.(7 dx = [f(x,t) gz(t dt + g(t)dw @

Reverse SDE (noise — data)
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1. Take your entire training dataset 7, and encode it to get a
dataset of latent variables Z = &£(7)
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Dataset Distillation by Clustering

Algorithm: you have a encoder-decoder pair (€, D).
1. Take your entire training dataset 7, and encode it to get a

dataset of latent variables Z = &£(7)
2. Cluster your latent variables in each class, say with k-means.
You get some “centroid” latents in each class Z.
3. Decode these clustered latents = Synthetic dataset S = D(Z).
S = decode o cluster o encode(T)
Oops, someone has done this before [Su et al., CVPR24].

compressed and repre
as a finite set of points



Dataset Distillation by Clustering

Data distribution Encode Latents distribution

_—

Forward SDE (data — n0|se)
dx = f(x,t)dt + g(t)dw

? :

[ lé E*« : &
Cluster
B score function
ox= 00 - frepis)a+ atrin —(E)
Reverse SDE (noise — data)
Distilled distribution Decode Latents cluster distribution

120} vr
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A closer look: decoding

3. Decode these clustered latents S = D(2).

What is the decoding the clusters actually doing?

A look at diffusion models.

1



Data distribution (1) Latents distribution
Ho

Forward SDE (data — n0|se)
dx = f(x,t)dt + g(t)dw
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Proposition
For the VESDE/VPSDE and any initial data distribution u € P,(RY)

with compact support bounded by R > 0, the backwards diffusion
process is well posed. Suppose that there are two distributions pur, vr
at time T that undergo the reverse diffusion process (with fixed initial
reference measure ) up to time t = 6 € (0,T) to produce
distributions ps,vs. There exists a (universal explicit) constant
C=C(6,T,R,d) € (0,400) such that if f: RY — R" is an L-Lipschitz
function, then the difference in expectation satisfies

IE,s ] — Eu, [l < CLM (i, 7).

Proof: basically stochastic Gronwall's inequality.



Proposition (informal)

Suppose you have a bounded data distribution pg, say of images.
Then you pass it through your forward stochastic process (noising),
up to pr. If you have another distribution vy that approximates pur,
then after passing both through the reverse stochastic process
(generation), your generated distributions vs will approximate .

14



Proposition (informal)

Suppose you have a bounded data distribution pug, say of images.
Then you pass it through your forward stochastic process (noising),
up to ur. If you have another distribution v7 that approximates pr,
then after passing both through the reverse stochastic process
(generation), your generated distributions vs will (weakly)
approximate ps.

If you are close in the latent space, then you are close after
decoding/generation.
Consequences:

- Gradient steps when training with the distilled dataset are
automatically similar to those on the full training dataset
(supposedly).

- No need to enforce through training!

14
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An even closer look: clustering

2. Cluster your latent variables in each class, say with k-means.
You get some “centroid” latents in each class Z.

What is clustering actually doing?

16



Clustering is optimal quantisation!

Definition o ]
For a probability measure p, the quadratic distortion of a set of

points {x1,...,Xx} is the u-average distance to the set:

G (X1, Xk) — /d m)'in [Ix — Xi|\2u(dx) = Exwﬂ[m(_in [IX — X,-HZ]. (1)
R

The optimal quantisation of u (at level .
K) is a set of points {xi,...,xc} that mini- | ANA
mizes the quadratic distortion. ‘ {

Fact: there is a 1-1 correspondence

with optimal quantisers {xi,...,xx} and

Wasserstein-minimisers with finite sup-

port. . _
Example quantisation of
a Gaussian




Relating optimal quantisers to Wasserstein minimisers

Proposition .
For a set of points {xi, .., xx}, the empirical measure v =, w;é(x;)

minimising Wh(p, v) satisfying suppv C {x1, .., Xc} is given by
v =3 w(C)o(x;).
- Sets of points « approximating measures (automatically)

- Rates (Zador's theorem): Wi (v, p) ~ O(K=/9) as number of
points K — oc.

C; ¢ R? are the Voronoi cells, set of points closest to x;.



Clustering is optimal quantisation!

Guess what is an algorithm for solving optimal quantisation?

2Actually, a slight modification thereof: the competitive learning vector quantisation
(CLvQ) algorithm.
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Clustering is optimal quantisation!

Guess what is an algorithm for solving optimal quantisation?
k-means clustering!? Produces {xi, ..., Xx}.

Previous approach: take the approximating measure to be

K

1
v= RZ(S(X,-)

=1

Key: finding {x;} is not enough! Actually, we need to optimise for
w; > 0,X; € R% in

K
= in W, wid(X;), .
7 SEI Y (Z i0(xi) M)

=1

2Actually, a slight modification thereof: the competitive learning vector quantisation
(CLvQ) algorithm.

19



A tiny modification

So we want small W, distance to give good approximation of the
latents vr ~ pur:

K
=a in W w;o(X;), .
v = argmin W, (Z i6(xi) u)

i=1

How do we get the w; ~ p(G;)?
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A tiny modification

So we want small W, distance to give good approximation of the
latents vr ~ pur:

K
=a in W w;o(X;), .
v = argmin W, (Z i6(xi) u)

i=1
How do we get the w; ~ p(G;)?

Answer: k-means does this automatically! Produces online
approximations to pu(G;).

We get better approximation (in measures) with no additional
computation.

20



Why do we need the coefficients?

If w; are uniform w; = 1/K, then this is the Wasserstein barycentre
problem (as opposed to optimal quantisation)?

—_
(52

—e—Uniform Wasserstein Barycenter
—v—K-Means (Free Was. Barycenter)

-
o

Wasserstein Distance

(&2

[

8
Iterations

Figure 3: The Wasserstein distance W is higher for the Wasserstein
barycentre. Courtesy of °.

3[Cuturi & Doucet ICML "14].

21



Data distribution (1) Latents distribution
Ho ur

Forward SDE (data — noise)
dx = f(x,t)dt + g(t)dw —)@

7]

o Clusteu ng
- score function ‘
i [8601) - 2(0fF g + (01 @
Reverse SDE (noise — data)
Distilled distribution (3) Latents cluster distribution
170 vr

We have the optimal quantisers vy ~ ur from (2), which implies

0 = po from (3).
22



Putting everything together

Algorithm: you have a encoder-decoder pair (£, D).
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dataset of latent variables Z = &£(T)
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Putting everything together

Algorithm: you have a encoder-decoder pair (£, D).

1. Take your entire training dataset 7, and encode it to get a
dataset of latent variables Z = &£(T)

2. Cluster your latent variables in each class, say with k-means.
You get some “centroid” latents in each class Z, and some
corresponding weights W = {w;},.z.

3. Decode these clustered latents S = D(2).

4. When training with the distilled dataset (S, W), multiply the

gradients of each training point with the corresponding weight.

T 2 (Z,W) ? (D(2),W) = (S, W)

23



ImageNet-1K: 1.2M images, 1000 classes, 150GB size.

Bi-level approaches: not possible.

- Previous maximum on 100K 128 x 128 images split into 200 classes,
~ 600MB size.

- Already requires 80GB of GPU memory for 10 images per class.

24



Comparing the addition of the k-means weights:

IPC  k-means weights? ResNet-18 ResNet-50 ResNet-101

10 X 27.9 335 34.2
v 33.1 34.4 36.7
50 X 55.2 62.4 63.4
v 56.2 62.5 63.6
100 X 593 65.4 66.5
4 60.1 65.9 66.7
X 62.6 67.8 68.1
200 v 63.4 68.0 68.6

Table 2: Dataset distillation test accuracy without and with the k-means
weights. Adding weights makes it uniformly better.

25



Comparing against other methods

Table 3: Comparison of top-1 classification performance on the ImageNet-1K
dataset for baselines versus the proposed DDOQ method at various IPCs. We
observe that DDOQ outperforms the previous SOTA method D*M, due to the

addition of weights to the synthetic data. The maximum performance for all
methods should be 69.8 as the soft labels are computed using a pre-trained
ResNet-18 model.

IPC Method ResNet-18 ResNet-50 ResNet-101 | IPC Method ResNet-18 ResNet-50 ResNet-101

TESLA 7.7 = = SRe?L 46.8102 556103 60.8105
SRe?L 2131056 28410, 309401 CDA 53.5 61.3 61.6

10 RDED 42.040 = 483110 50 RDED 56.510.1 = 612104
D“M 279 335 34.2 D*M 55.2 62.4 63.4

DDOQ 33.110.60 34.440.99 36.710.80 DDOQ 56.240.07 62.5.40.24 63.6.10.13

SRe?L 528403 61.00.4 62840, SRe?L 57.0404 64.6103 659,103
100 CDA 58.0 65.1 65.9 200 CDA 63.3 67.6 68.4
D“M 59.3 65.4 66.5 D*M 62.6 67.8 68.1

bDDOQ 60.140.15 65.940.15 66.7 +0.06 DDOQ 63.4.10.08 68.0-0.05 68.6.10.08

26



What do the weights look like?

107§
1072

Figure 4: Example distilled images of the “jeep” class in ImageNet-1K along
with their k-means weights. There is little to no features that can be used to
differentiate the low and high weighted images, mainly due to the high
fidelity of the diffusion model. However, the weights are indicative of the
distribution of the training data in the latent space of the diffusion model.

27



1. Dataset distillation: turning big data into small data
2. By thinking a bit, we get
i) ... rid of any bi-level formulations;
ii) Theoretical perspective as to why clustering-style methods work
iii) State of the art performance for free
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1. Dataset distillation: turning big data into small data
2. By thinking a bit, we get
i) ... rid of any bi-level formulations;

ii) Theoretical perspective as to why clustering-style methods work
iii) State of the art performance for free

What we really use/assume:

1. Generative (diffusion) models as implicitly modelling the
underlying data distribution (model expressiveness/trainability)

2. Faithfulness of data distribution <+ latent space mapping
(manifold hypothesis)

28
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Generalisation

Table 4: Generalization performance.

Student Network
Teacher Network

ResNet-18 MobileNet-V2  EfficientNet-BO  Swin-T

cenet1s DM 55.2 479 55.4 58.1

DDOQ  56.2 52.1 58.0 574

. D“M 476 42.9 49.8 58.9

MobileNetv2  yh o 477 45.6 BAE 56.3

A D“M 275 219 26.4 38.1
Swin-T

DDOQ 28.5 24.1 29.3 36.0




cLvQ

Algorithm 1: CLVQ

Data: initial cluster centers x(o), ...,X(KO), step-sizes (7j)i»o, 1 < 0
Initialize weights w = (wx, ..., wgx) = (1/K, ..., 1/K);

while not converged do

Sample X; ~ p;

Select “winner” Ry € arg ming <y [|1Xi — xg)||'

Update xi ) (1 - Yi)Xy XD £ X if R = Ryin, Otherwise
X X;(?') :

Update weights wy, <— (T — )Wk + ¥ile—ky,..;

i~ i+1

end

Result: quantization v = S35, wid(x*)
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