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Assume we have a system
dXt == bt(Xt) dt + dBt, X() = Xo.

Examples:
» Stochastic dynamical system (Weather, Finance)

» Diffusion Model / Flow Matching

More general diffusion coefficients possible!
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Conditioning the Reference System

We now want to modify the reference dynamics.

We do this to sample conditional events of X|Y =y.

» Probability of no rain in Bath, conditioned on it raining in
Oxford?

This can also be seen as weighting the reference path measure
with a "reward” given by the likelihood

G(XT;Y).



Double Well Example
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(a) Unconditioned Paths (b) Conditioned Paths

Figure: Double Well Transitions
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Singular Rewards

We concentrate on the case of Bridge simulation:
Bridge simulation: The task of conditioning X on
XT = XT.

This can be seen as
1. Singular likelihood G = dx, (Xt).
2. Full-information observation Y = Xr.

All algorithms can be generalised to other Y.
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Doob’s H-Transform

Goal: Condition
dXt = bt(Xt) dt + ut(X[)dt + dBt.

on Xt = X¢.

The solution is given by adding
Ur(xe) = Vy, logp(Xr = x7|Xe = X¢).

However, p(Xt = x¢|X; = x¢) is unknown.

How do we approximate it?
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Inspirations from Optimal Control

We can rewrite

1

\Y% ng( T XT| t Xt) p(XT :XT’Xt :Xt)

Ve D(XT = x7|Xt = X¢)

Now, formally, we can write:

Vp(Xr = x7|Xe = X¢) =V E[0x, (X7)]
:E[V(SXT (X? )‘]T\t]v

where JT|t = VXXT-

» This looks like we are optimizing the expected likelihood
G = 0y (X71).

» The problem is that G is very singular, and has no
derivatives.
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What to do?

What do we do with E[Vdy, (X7 )J7|]?

What do we do if we have the derivative of a non-smooth
function?
(Everyone in unison) We integrate by parts!

(Excitement grips the room — chaos erupts, chairs are launched,
people start yelling formulas)



Proof
Integration by parts is done via Malliavin calculus.

Dso(Xr) = Vo(Xr)DsXr = Vp(Xr)J7)5 (2)
V(Xr) = Dsp(XT)J7, T|57 3)
T T
Vo(X7) J1)0 :/0 Ds@(XT)JﬂSIBst J110 :/o Dsp(X1)J51035ds.
)

Vo) =B [ [ Doty )

_E [cp(XT) /0 TJS|055)Tst] . ©)
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End Result

1 T
Vlogp(Xr = xr|Xe = x¢) = TtIE[/ JedBs|Xe = x¢, Xr = xr].
- t

» We pick only the paths that land at xr and predict the drift

of the Brownian motion (It has a drift because of
conditioning, think of Girsanov).

W dB;



Simplified Special Case X; = B,

Special case: X; = B; and therefore J;; = Id. Then:

1
V]ng(XT = XT‘Xt = Xt) = 7]E[BT — Bt|Xt = Xt,XT = XT].
T—t

is predicting the average drift of the driving Brownian
motion.
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Main Result

Theorem
For any (3, define the score process

T
St = / Bs J)dBs.
t
Then the minimizer
T
u* = argmin, E [/ ||us (Xs; Xr) — S| ds|
0
is the diffusion bridge drift, i.e. the law of

dXt = b(Xt) dt + u;k (Xt,XT) dt + dBt

coincides with the conditional law of the reference process X, given
XT = XT.



Algorithm 1 BEL - Training Step

Require: o : [0,1] — R™" initial condition xo, batch size N,
current drift approximation u?, time grid {to,t1,...ty}. Ini-
tialize

: fori=1toN do

2:  Sample a sample path X with corresponding Brownian mo-

tion path B from the SDE X;.
3:  Sample an observation Y = G(Xr).
Compute the Monte Carlo estimator S;.
5:  Calculate the single-path loss

—

Z Hut (X3 Y) = S (X, B)|?,

end for
Summ for the full-batch loss £Y(9) = Zivzl Li(0).
Take a gradient step on L3(6).

3




A few remarks



Remark 1: General Score Representation

Assume we have an SDE

dXt = bt(Xt) de + O't(X[) dBt, (7)

Lemma
The score can be represented as

t
Vioep) = & | [ (o075 g b~
0
In particular, for any such «, the loss
t
£ =% [l - [ (o) Teldsl? ®)
0

has a unique minimiser given by u:(x) = V log p¢(x).
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Since the formula only relies on conditional expectations, it can
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Remark 2: Infinite dimensions and manifolds

Since the formula only relies on conditional expectations, it can
be naturally extended to infinite dimensional or
manifold-valued settings.

This is not the case for formulas involving the Lebesgue-density
Dt, as in V log p;.



Now some nice pictures!



Double Well
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Figure: In (a), we plot a double-well potential. In (b), we sample
1,000 paths from the unconditioned SDE and observe that they
remain confined to a single potential minimum, failing to transition
between them. This highlights the inherent difficulty of the problem.
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Shape Spaces

Infinite dimensional problem in theory, non-constant diffusion
coefficient.
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Shape Spaces

Infinite dimensional problem in theory, non-constant diffusion
coefficient.

ud W W W B S

Method Dist

BEL average  0.085
Time reversal 0.090
Adjoint paths 0.498
Untrained 1.396

Figure: Performance Metrics. We
outperform competing methods.



Diffusion Models
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Figure: In panel (a), the top-left image shows the ground truth used
for conditioning. The remaining 15 images are samples generated by
the diffusion model conditioned on the upper-left quarter of the
ground truth image. Panel (b) displays only the conditioning inputs:
again, the top-left image is the ground truth, while the others show
the corresponding conditioned quarters used for generation.



Thank you!



More general formula: We can weigh which part of the
Brownian motion we want to predict:

T
V log p(Xr = xrlX, = x;) = IEJ[/ By I B, = 3, X = x].
t
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Deriving the Loss

T
V log p(Xr = xrlX, = x;) = E[/ By I B, = 0, X = x].
t
This tells us that if we can get Monte Carlo estimates of
T
St = / ﬁst—l‘—[dBM
t
conditioned on X7, then we can regress against them.

Problem: We need samples from X conditioned on xy.

Solution: Amortization!
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How to do general Observations?

» We now know how to control a diffusion towards a single
endpoint xr.

» If we have a general observation Y = G(Xr), how can we

steer it towards some Xt which generates that expectation?
(Bayesian Posterior).

Proposition

We have that

Vi logp(Y[X;5) = E[Vx, log pe(Xr|X;)[Y, X]
= E[S|Y, X;]



Remark 2: Choice of

Different choices of 3 lead to different algorithms:

1.
2.

Predict only the near future.

Predict the last movements of the Brownian motion before
it hits the target.

. Predict average movement of the Brownian motion over the

full path.

. Pick 3; to minimize the variance of the loss.
. Learn S;.



Remark 3: Calculation of J;,

> We never need to calculate the full matrix Jg.
» Can be done via an adjoint SDE method.



Remark 4: We rediscover other methods as special cases

» BEL-First is similar to a method used in the paper [1].
» The “Reparameterization Trick” from [2] is also a special
case.

[1] Simulating Diffusion Bridges with Score Matching; Heng, De

Bortoli, Doucet, Thornton
[2] Stochastic Optimal Control Matching; Domingo-Enrich, Han,

Amos, Bruna, Chen



(c) BEL-average

(d) BEL-optimal
Figure: Double Well 2D
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Metrics

Loss MV Dist

BEL average 34x1071 3.0x1071
BEL first 21x1071 3.3x1071
BEL last 59x1071 1.1 x 10°
BEL optimal 3.1x1071 3.0x1071
Reparametrization Trick 5.5 x 1071 5.2 x 1071
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