Conditioning Diffusions Using Malliavin Calculus

Jakiw Pidstrigach, Libby Baker, Carles Domingo-Enrich, George Deligiannidis, and Nik Nüsken

Department of Statistics
University of Oxford

Math4DL Conference, University of Bath, 6th of July 2025

Assume we have a system

$$dX_t = b_t(X_t) dt + dB_t, X_0 = x_0.$$
 (1)

Examples:

Assume we have a system

$$dX_t = b_t(X_t) dt + dB_t, X_0 = x_0.$$
 (1)

Examples:

Stochastic dynamical system (Weather, Finance)

Assume we have a system

$$dX_t = b_t(X_t) dt + dB_t, X_0 = x_0.$$
 (1)

Examples:

- Stochastic dynamical system (Weather, Finance)
- ▶ Diffusion Model / Flow Matching

Assume we have a system

$$dX_t = b_t(X_t) dt + dB_t, X_0 = x_0.$$
 (1)

Examples:

- Stochastic dynamical system (Weather, Finance)
- ▶ Diffusion Model / Flow Matching

More general diffusion coefficients possible!

We now want to *modify* the reference dynamics.

We now want to *modify* the reference dynamics.

We do this to sample conditional events of X|Y = y.

We now want to *modify* the reference dynamics.

We do this to sample conditional events of X|Y = y.

Probability of no rain in Bath, conditioned on it raining in Oxford?

We now want to *modify* the reference dynamics.

We do this to sample conditional events of X|Y = y.

Probability of no rain in Bath, conditioned on it raining in Oxford?

This can also be seen as weighting the reference path measure with a "reward" given by the likelihood

$$G(X_T; y)$$
.

.

Double Well Example

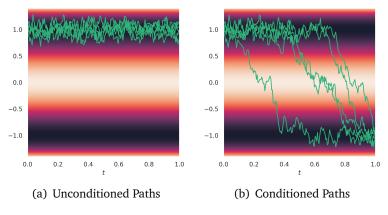


Figure: Double Well Transitions

We concentrate on the case of Bridge simulation:

Bridge simulation: The task of conditioning *X* on

$$X_T = x_T$$
.

We concentrate on the case of Bridge simulation:

Bridge simulation: The task of conditioning *X* on

$$X_T = x_T$$
.

This can be seen as

We concentrate on the case of Bridge simulation:

Bridge simulation: The task of conditioning *X* on

$$X_T = x_T$$
.

This can be seen as

1. Singular likelihood $G \approx \delta_{x_T}(X_T)$.

We concentrate on the case of Bridge simulation:

Bridge simulation: The task of conditioning *X* on

$$X_T = x_T$$
.

This can be seen as

- 1. Singular likelihood $G \approx \delta_{x_T}(X_T)$.
- 2. Full-information observation $Y = X_T$.

We concentrate on the case of Bridge simulation:

Bridge simulation: The task of conditioning *X* on

$$X_T = x_T$$
.

This can be seen as

- 1. Singular likelihood $G \approx \delta_{x_T}(X_T)$.
- 2. Full-information observation $Y = X_T$.

All algorithms can be generalised to other *Y*.

Goal: Condition

$$dX_t = b_t(X_t) dt + dB_t.$$

on
$$X_T = x_t$$
.

Goal: Condition

$$dX_t = b_t(X_t) dt + u_t(X_t) dt + dB_t.$$

on $X_T = x_t$.

The solution is given by adding

$$u_t(x_t) = \nabla_{x_t} \log p(X_T = x_T | X_t = x_t).$$

Goal: Condition

$$dX_t = b_t(X_t) dt + u_t(X_t) dt + dB_t.$$

on $X_T = x_t$.

The solution is given by adding

$$u_t(x_t) = \nabla_{x_t} \log p(X_T = x_T | X_t = x_t).$$

However, $p(X_T = x_t | X_t = x_t)$ is unknown.

Goal: Condition

$$dX_t = b_t(X_t) dt + u_t(X_t) dt + dB_t.$$

on $X_T = x_t$.

The solution is given by adding

$$u_t(x_t) = \nabla_{x_t} \log p(X_T = x_T | X_t = x_t).$$

However, $p(X_T = x_t | X_t = x_t)$ is unknown.

How do we approximate it?

We can rewrite

$$\nabla \log p(X_T = x_T | X_t = x_t) = \frac{1}{p(X_T = x_T | X_t = x_t)} \nabla_{x_t} p(X_T = x_T | X_t = x_t)$$

We can rewrite

$$\nabla \log p(X_T = x_T | X_t = x_t) = \frac{1}{p(X_T = x_T | X_t = x_t)} \nabla_{x_t} p(X_T = x_T | X_t = x_t)$$

Now, formally, we can write:

$$\nabla p(X_T = x_T | X_t = x_t) = \nabla_{x_t} \mathbb{E}[\delta_{x_T}(X_T^{x_t})]$$

= $\mathbb{E}[\nabla \delta_{x_T}(X_T^{x_t}) J_{T|t}],$

where
$$J_{T|t} = \nabla_{X_t} X_T$$
.

We can rewrite

$$\nabla \log p(X_T = x_T | X_t = x_t) = \frac{1}{p(X_T = x_T | X_t = x_t)} \nabla_{x_t} p(X_T = x_T | X_t = x_t)$$

Now, formally, we can write:

$$\nabla p(X_T = x_T | X_t = x_t) = \nabla_{x_t} \mathbb{E}[\delta_{x_T}(X_T^{x_t})]$$

= $\mathbb{E}[\nabla \delta_{x_T}(X_T^{x_t}) J_{T|t}],$

where $J_{T|t} = \nabla_{X_t} X_T$.

This looks like we are optimizing the expected likelihood $G = \delta_{x_T}(X_T)$.

We can rewrite

$$\nabla \log p(X_T = x_T | X_t = x_t) = \frac{1}{p(X_T = x_T | X_t = x_t)} \nabla_{x_t} p(X_T = x_T | X_t = x_t)$$

Now, formally, we can write:

$$\nabla p(X_T = x_T | X_t = x_t) = \nabla_{x_t} \mathbb{E}[\delta_{x_T}(X_T^{x_t})]$$

= $\mathbb{E}[\nabla \delta_{x_T}(X_T^{x_t}) J_{T|t}],$

where $J_{T|t} = \nabla_{X_t} X_T$.

- This looks like we are optimizing the expected likelihood $G = \delta_{x_T}(X_T)$.
- ► The problem is that *G* is very singular, and has no derivatives.

What to do?

What do we do with $\mathbb{E}[\nabla \delta_{x_T}(X_T^{x_t})J_{T|t}]$?

What to do?

What do we do with $\mathbb{E}[\nabla \delta_{x_T}(X_T^{x_t})J_{T|t}]$?

What do we do if we have the derivative of a non-smooth function?

What to do?

What do we do with $\mathbb{E}[\nabla \delta_{x_T}(X_T^{x_t})J_{T|t}]$?

What do we do if we have the derivative of a non-smooth function?

(Everyone in unison) We integrate by parts!

(Excitement grips the room — chaos erupts, chairs are launched, people start yelling formulas)

Proof

Integration by parts is done via Malliavin calculus.

$$D_{s}\varphi(X_{T}) = \nabla\varphi(X_{T})D_{s}X_{T} = \nabla\varphi(X_{T})J_{T|s}$$
 (2)

$$\nabla \varphi(X_T) = D_s \varphi(X_T) J_{T|s}^{-1}, \tag{3}$$

$$\nabla \varphi(X_T^x) \, \boldsymbol{J_{T|0}} = \int_0^T D_s \varphi(X_T) J_{T|s}^{-1} \beta_s \mathrm{d}s \, \boldsymbol{J_{T|0}} = \int_0^T D_s \varphi(X_T) J_{s|0} \beta_s \mathrm{d}s. \tag{4}$$

$$\mathbb{E}[\nabla_x \varphi(X_T^x)] = \mathbb{E}\left[\int_0^T D_s \varphi(X_T) J_{s|0} \beta_s ds\right]$$
 (5)

$$= \mathbb{E}\left[\varphi(X_T) \int_0^T J_{s|0} \beta_s\right]^\top dB_s. \tag{6}$$

End Result

$$\nabla \log p(X_T = x_T | X_t = x_t) = \frac{1}{T-t} \mathbb{E}\left[\int_t^T J_{s|t}^\top dB_s | X_t = x_t, X_T = x_T\right].$$

End Result

$$\nabla \log p(X_T = x_T | X_t = x_t) = \frac{1}{T - t} \mathbb{E}\left[\int_t^T J_{s|t}^\top dB_s | X_t = x_t, X_T = x_T\right].$$

▶ We pick only the paths that land at x_T and predict the drift of the Brownian motion (It has a drift because of conditioning, think of Girsanov).

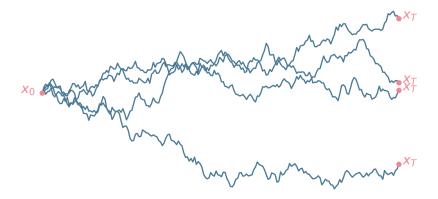
Simplified Special Case $X_t = B_t$

Special case: $X_t = B_t$ and therefore $J_{t|s} = \text{Id}$. Then:

$$\nabla \log p(X_T = x_T | X_t = x_t) = \frac{1}{T - t} \mathbb{E}[B_T - B_t | X_t = x_t, X_T = x_T].$$

is predicting the **average drift** of the **driving Brownian motion**.

Amortization



Main Result

Theorem

For any β_s , define the score process

$$\mathcal{S}_t := \int_t^T \beta_s \, J_{s|t}^{\mathsf{T}} \mathrm{d}B_s.$$

Then the minimizer

$$u^* = \operatorname{argmin}_u \mathbb{E}\left[\int_0^T \|u_s(X_s; X_T) - \mathcal{S}_s\|^2 ds\right],$$

is the diffusion bridge drift, i.e. the law of

$$dX_t = b(X_t) dt + u_t^*(X_t; x_T) dt + dB_t$$

coincides with the conditional law of the reference process X, given $X_T = x_T$.

Algorithm 1 BEL - Training Step

Require: $\alpha:[0,1]\to\mathbb{R}^{n\times n}$, initial condition x_0 , batch size N, current drift approximation u^{θ} , time grid $\{t_0,t_1,\ldots t_M\}$. Initialize

- 1: **for** i = 1 to N **do**
- 2: Sample a sample path X with corresponding Brownian motion path B from the SDE X_t .
- 3: Sample an observation $Y = G(X_T)$.
- 4: Compute the Monte Carlo estimator S_s .
- 5: Calculate the single-path loss

$$l_i(\theta) = \sum_{j=1}^{M-1} \|u_{t_j}^{\theta}(X_{t_j}; Y) - \mathcal{S}_{t_j}(X, B)\|^2,$$

- 6: end for
- 7: Summ for the full-batch loss $\mathcal{L}^M(\theta) = \sum_{i=1}^N l_i(\theta)$.
- 8: Take a gradient step on $\mathcal{L}^B(\theta)$.

A few remarks

Remark 1: General Score Representation

Assume we have an SDE

$$dX_t = b_t(X_t) dt + \sigma_t(X_t) dB_t, (7)$$

Lemma

The score can be represented as

$$\nabla \log p_t(x) = \mathbb{E}\left[\int_0^t (\sigma(X_s)^{-1}J_{t|s}^{-1})^\top \alpha_s' \,\mathrm{d}B_s | X_t = x\right].$$

In particular, for any such α , the loss

$$\mathcal{L}(u) = \mathbb{E}\left[\|u_t(X_t) - \int_0^t (\sigma_s(X_s)^{-1} J_{t|s}^{-1})^\top \alpha_s' \, dB_s \|^2 \right]$$
(8)

has a unique minimiser given by $u_t(x) = \nabla \log p_t(x)$.

Remark 2: Infinite dimensions and manifolds

Since the formula only relies on conditional expectations, it can be naturally extended to **infinite dimensional** or **manifold-valued** settings.

Remark 2: Infinite dimensions and manifolds

Since the formula only relies on conditional expectations, it can be naturally extended to **infinite dimensional** or **manifold-valued** settings.

This is not the case for formulas involving the Lebesgue-density p_t , as in $\nabla \log p_t$.

Now some nice pictures!

Double Well

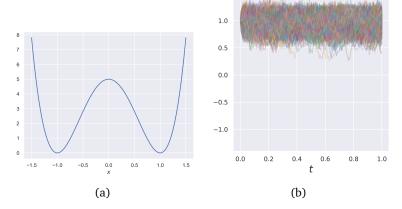


Figure: In (a), we plot a double-well potential. In (b), we sample 1,000 paths from the unconditioned SDE and observe that they remain confined to a single potential minimum, failing to transition between them. This highlights the inherent difficulty of the problem.

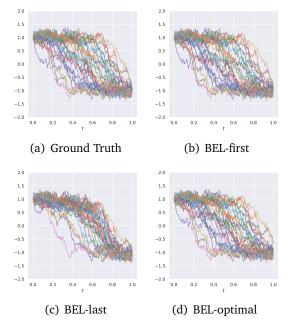


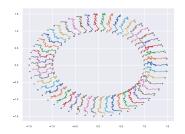
Figure: Double Well 1D

Shape Spaces

Infinite dimensional problem in theory, non-constant diffusion coefficient.

Shape Spaces

Infinite dimensional problem in theory, non-constant diffusion coefficient.



Method	Dist
BEL average	0.085
Time reversal	0.090
Adjoint paths	0.498
Untrained	1.396

Figure: Performance Metrics. We outperform competing methods.

Diffusion Models

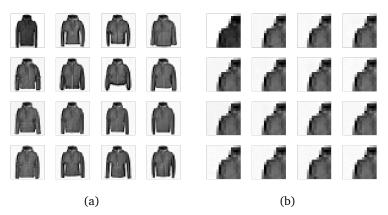
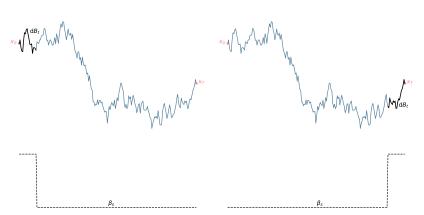


Figure: In panel (a), the top-left image shows the ground truth used for conditioning. The remaining 15 images are samples generated by the diffusion model conditioned on the upper-left quarter of the ground truth image. Panel (b) displays only the conditioning inputs: again, the top-left image is the ground truth, while the others show the corresponding conditioned quarters used for generation.

Thank you!

More general formula: We can weigh which part of the Brownian motion we want to predict:

$$\nabla \log p(X_T = x_T | X_t = x_t) = \mathbb{E}[\int_t^T \beta_s J_{s|t}^\top dB_s | X_t = x_t, X_T = x_T].$$



$$\nabla \log p(X_T = x_T | X_t = x_t) = \mathbb{E}\left[\int_t^T \beta_s J_{s|t}^\top dB_s | X_t = x_t, X_T = x_T\right].$$

This tells us that if we can get Monte Carlo estimates of

$$\mathcal{S}_t := \int_t^T \beta_s J_{s|t}^{\top} \mathrm{d}B_s,$$

conditioned on X_T , then we can regress against them.

$$\nabla \log p(X_T = x_T | X_t = x_t) = \mathbb{E}\left[\int_t^T \beta_s J_{s|t}^\top dB_s | X_t = x_t, X_T = x_T\right].$$

This tells us that if we can get Monte Carlo estimates of

$$\mathcal{S}_t := \int_t^T \beta_s J_{s|t}^{\mathsf{T}} \mathrm{d}B_s,$$

conditioned on X_T , then we can regress against them.

Problem:

$$\nabla \log p(X_T = x_T | X_t = x_t) = \mathbb{E}\left[\int_t^T \beta_s J_{s|t}^\top dB_s | X_t = x_t, X_T = x_T\right].$$

This tells us that if we can get Monte Carlo estimates of

$$\mathcal{S}_t := \int_t^T \beta_s J_{s|t}^{\top} \mathrm{d}B_s,$$

conditioned on X_T , then we can regress against them.

Problem: We need samples from *X* conditioned on x_T .

$$\nabla \log p(X_T = x_T | X_t = x_t) = \mathbb{E}\left[\int_t^T \beta_s J_{s|t}^\top dB_s | X_t = x_t, X_T = x_T\right].$$

This tells us that if we can get Monte Carlo estimates of

$$\mathcal{S}_t := \int_t^T \beta_s J_{s|t}^{\top} \mathrm{d}B_s,$$

conditioned on X_T , then we can regress against them.

Problem: We need samples from *X* conditioned on x_T .

Solution: Amortization!

We now know how to control a diffusion towards a single endpoint x_T .

- We now know how to control a diffusion towards a single endpoint x_T .
- ▶ If we have a general observation $Y = G(X_T)$, how can we steer it towards some X_T which generates that expectation? (Bayesian Posterior).

- We now know how to control a diffusion towards a single endpoint x_T .
- ▶ If we have a general observation $Y = G(X_T)$, how can we steer it towards some X_T which generates that expectation? (Bayesian Posterior).

- We now know how to control a diffusion towards a single endpoint x_T .
- ▶ If we have a general observation $Y = G(X_T)$, how can we steer it towards some X_T which generates that expectation? (Bayesian Posterior).

Proposition

We have that

$$egin{aligned}
abla_{X_t} \log p(Y|X_s) &= \mathbb{E}[
abla_{X_t} \log p_t(X_T|X_s)|Y,X_s] \ &= \mathbb{E}[\mathcal{S}_s|Y,X_s] \end{aligned}$$

Remark 2: Choice of β_s

Different choices of β lead to different algorithms:

- 1. Predict only the near future.
- 2. Predict the last movements of the Brownian motion before it hits the target.
- 3. Predict average movement of the Brownian motion over the full path.
- 4. Pick β_s to minimize the variance of the loss.
- 5. Learn β_s .

Remark 3: Calculation of $J_{s|t}$

- ▶ We never need to calculate the full matrix $J_{s|t}$.
- Can be done via an adjoint SDE method.

Remark 4: We rediscover other methods as special cases

- ▶ BEL-First is similar to a method used in the paper [1].
- ► The "Reparameterization Trick" from [2] is also a special case.

- [1] Simulating Diffusion Bridges with Score Matching; Heng, De Bortoli, Doucet, Thornton
- [2] Stochastic Optimal Control Matching; Domingo-Enrich, Han, Amos, Bruna, Chen

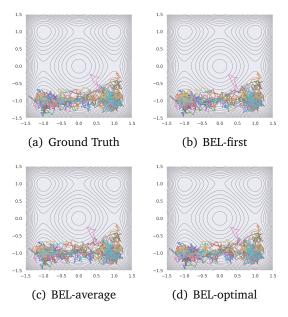


Figure: Double Well 2D

Metrics

Loss	MV	Dist
BEL average	3.4×10^-1	3.0×10^-1
BEL first	$2.1 imes 10^-1$	$3.3 imes 10^-1$
BEL last	$5.9 imes 10^-1$	$1.1 imes 10^{0}$
BEL optimal	$3.1 imes 10^-1$	$3.0 imes 10^-1$
Reparametrization Trick	5.5×10^-1	5.2×10^-1