
Conditioning Diffusions
Using Malliavin Calculus

Jakiw Pidstrigach, Libby Baker, Carles Domingo-Enrich,
George Deligiannidis, and Nik Nüsken
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Reference System

Assume we have a system

dXt = bt(Xt)dt + dBt, X0 = x0. (1)

Examples:

▶ Stochastic dynamical system (Weather, Finance)

▶ Diffusion Model / Flow Matching
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Reference System

Assume we have a system

dXt = bt(Xt)dt + dBt, X0 = x0. (1)

Examples:

▶ Stochastic dynamical system (Weather, Finance)

▶ Diffusion Model / Flow Matching

More general diffusion coefficients possible!



Conditioning the Reference System

We now want to modify the reference dynamics.

We do this to sample conditional events of X|Y = y.
▶ Probability of no rain in Bath, conditioned on it raining in

Oxford?

This can also be seen as weighting the reference path measure
with a ”reward” given by the likelihood

G(XT; y).
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Double Well Example

(a) Unconditioned Paths (b) Conditioned Paths

Figure: Double Well Transitions



Singular Rewards

We concentrate on the case of Bridge simulation:

Bridge simulation: The task of conditioning X on

XT = xT.

This can be seen as

1. Singular likelihood G ≈ δxT(XT).

2. Full-information observation Y = XT.

All algorithms can be generalised to other Y.
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Doob’s H-Transform
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on XT = xt.

The solution is given by adding

ut(xt) = ∇xt log p(XT = xT|Xt = xt).

However, p(XT = xt|Xt = xt) is unknown.

How do we approximate it?
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Inspirations from Optimal Control

We can rewrite

∇ log p(XT = xT|Xt = xt) =
1

p(XT = xT|Xt = xt)
∇xtp(XT = xT|Xt = xt)

Now, formally, we can write:

∇p(XT = xT|Xt = xt) =∇xtE[δxT(X
xt
T )]

=E[∇δxT(X
xt
T )JT|t],

where JT|t = ∇XtXT.
▶ This looks like we are optimizing the expected likelihood

G = δxT(XT).
▶ The problem is that G is very singular, and has no

derivatives.
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What do we do if we have the derivative of a non-smooth
function?

(Everyone in unison) We integrate by parts!

(Excitement grips the room — chaos erupts, chairs are launched,
people start yelling formulas)
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Proof
Integration by parts is done via Malliavin calculus.

Dsφ(XT) = ∇φ(XT)DsXT = ∇φ(XT)JT|s (2)

∇φ(XT) = Dsφ(XT)J−1
T|s , (3)

∇φ(Xx
T) JT|0 =

∫ T

0
Dsφ(XT)J−1

T|sβsds JT|0 =

∫ T

0
Dsφ(XT)Js|0βsds.

(4)

E[∇xφ(Xx
T)] = E

[∫ T

0
Dsφ(XT)Js|0βsds

]
(5)

= E
[
φ(XT)

∫ T

0
Js|0βs)

⊤dBs

]
. (6)



End Result

∇ log p(XT = xT|Xt = xt) =
1

T − t
E[
∫ T

t
J⊤s|tdBs|Xt = xt,XT = xT].

▶ We pick only the paths that land at xT and predict the drift
of the Brownian motion (It has a drift because of
conditioning, think of Girsanov).
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Simplified Special Case Xt = Bt

Special case: Xt = Bt and therefore Jt|s = Id. Then:

∇ log p(XT = xT|Xt = xt) =
1

T − t
E[BT − Bt|Xt = xt,XT = xT].

is predicting the average drift of the driving Brownian
motion.



Amortization



Main Result

Theorem
For any βs, define the score process

St :=

∫ T

t
βs J⊤s|tdBs.

Then the minimizer

u∗ = argminu E
[∫ T

0
∥us(Xs;XT)− Ss∥2 ds

]
,

is the diffusion bridge drift, i.e. the law of

dXt = b(Xt)dt + u∗
t (Xt; xT)dt + dBt

coincides with the conditional law of the reference process X, given
XT = xT.



Algorithm 1 BEL - Training Step

Require: α : [0,1] → Rn×n, initial condition x0, batch size N,
current drift approximation uθ, time grid {t0, t1, . . . tM}. Ini-
tialize

1: for i = 1 to N do
2: Sample a sample path X with corresponding Brownian mo-

tion path B from the SDE Xt.
3: Sample an observation Y = G(XT).
4: Compute the Monte Carlo estimator Ss.
5: Calculate the single-path loss

li(θ) =
M−1∑
j=1

∥uθ
tj
(Xtj ;Y)− Stj(X,B)∥

2,

6: end for
7: Summ for the full-batch loss LM(θ) =

∑N
i=1 li(θ).

8: Take a gradient step on LB(θ).



A few remarks



Remark 1: General Score Representation

Assume we have an SDE

dXt = bt(Xt)dt + σt(Xt)dBt, (7)

Lemma
The score can be represented as

∇ log pt(x) = E
[∫ t

0
(σ(Xs)

−1J−1
t|s )

⊤α′
s dBs|Xt = x

]
.

In particular, for any such α, the loss

L(u) = E
[
∥ut(Xt)−

∫ t

0
(σs(Xs)

−1J−1
t|s )

⊤α′
s dBs∥2

]
(8)

has a unique minimiser given by ut(x) = ∇ log pt(x).



Remark 2: Infinite dimensions and manifolds

Since the formula only relies on conditional expectations, it can
be naturally extended to infinite dimensional or
manifold-valued settings.

This is not the case for formulas involving the Lebesgue-density
pt, as in ∇ log pt.
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Now some nice pictures!



Double Well

(a) (b)

Figure: In (a), we plot a double-well potential. In (b), we sample
1,000 paths from the unconditioned SDE and observe that they
remain confined to a single potential minimum, failing to transition
between them. This highlights the inherent difficulty of the problem.



(a) Ground Truth (b) BEL-first

(c) BEL-last (d) BEL-optimal

Figure: Double Well 1D



Shape Spaces
Infinite dimensional problem in theory, non-constant diffusion
coefficient.
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Figure: Performance Metrics. We
outperform competing methods.
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Diffusion Models

(a) (b)

Figure: In panel (a), the top-left image shows the ground truth used
for conditioning. The remaining 15 images are samples generated by
the diffusion model conditioned on the upper-left quarter of the
ground truth image. Panel (b) displays only the conditioning inputs:
again, the top-left image is the ground truth, while the others show
the corresponding conditioned quarters used for generation.



Thank you!



More general formula: We can weigh which part of the
Brownian motion we want to predict:

∇ log p(XT = xT|Xt = xt) = E[
∫ T

t
βs J⊤s|tdBs|Xt = xt,XT = xT].



Deriving the Loss

∇ log p(XT = xT|Xt = xt) = E[
∫ T

t
βs J⊤s|tdBs|Xt = xt,XT = xT].

This tells us that if we can get Monte Carlo estimates of

St :=

∫ T

t
βsJ⊤s|tdBs,

conditioned on XT, then we can regress against them.

Problem: We need samples from X conditioned on xT.

Solution: Amortization!
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How to do general Observations?

▶ We now know how to control a diffusion towards a single
endpoint xT.

▶ If we have a general observation Y = G(XT), how can we
steer it towards some XT which generates that expectation?
(Bayesian Posterior).

Proposition
We have that

∇Xt log p(Y|Xs) = E[∇Xt log pt(XT|Xs)|Y,Xs]

= E[Ss|Y,Xs]
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Remark 2: Choice of βs

Different choices of β lead to different algorithms:

1. Predict only the near future.

2. Predict the last movements of the Brownian motion before
it hits the target.

3. Predict average movement of the Brownian motion over the
full path.

4. Pick βs to minimize the variance of the loss.

5. Learn βs.



Remark 3: Calculation of Js|t

▶ We never need to calculate the full matrix Js|t.
▶ Can be done via an adjoint SDE method.



Remark 4: We rediscover other methods as special cases

▶ BEL-First is similar to a method used in the paper [1].
▶ The “Reparameterization Trick” from [2] is also a special

case.

[1] Simulating Diffusion Bridges with Score Matching; Heng, De
Bortoli, Doucet, Thornton
[2] Stochastic Optimal Control Matching; Domingo-Enrich, Han,
Amos, Bruna, Chen



(a) Ground Truth (b) BEL-first

(c) BEL-average (d) BEL-optimal

Figure: Double Well 2D



Metrics

Loss MV Dist

BEL average 3.4 × 10−1 3.0 × 10−1
BEL first 2.1 × 10−1 3.3 × 10−1
BEL last 5.9 × 10−1 1.1 × 100

BEL optimal 3.1 × 10−1 3.0 × 10−1
Reparametrization Trick 5.5 × 10−1 5.2 × 10−1
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