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Notation & Problem

Assume that
y=A0)x+b
where:

o A(0) : R" — RM is a linear operator
e beRM: noise
e 0 € RP: parameterization of the operator

Our main example

A(0)x = h(0) * x
h(0): kernel depending on parameter 6 (e.g. pixel values, Zernike coefficients)
h is called PSF (Point Spread Function)
Blind Inverse Problem
Find (4, %) ~ (6, %) from y.
e Looks much harder that classical linear inverse problems

e Yet... Dominant in applications



Posterior Maximization

Assuming that everything is random:

e x realization of x ~ p, (learnt prior)
e 0 realization of @ ~ py uniform over a compact set ©

e b realization of b ~ N(0, 0%/)

MAP solution

(%,0) = argmax p(x, 0]y)
xeRN . pco
1
= e oA = vz — log px(x)
1
= argmin > [A0)x — yI + 809

with g(x) = — log px(x)



A Very Popular Framework

About 5-10 papers/year since last 20 years including:

e T. Chan et al. Total Variation Blind Deconvolution, IEEE IP 1998
e A. Levin et al. Understanding blind deconvolution, CVPR 2009

e D. Perrone et al. Total variation blind deconvolution, CVPR 2014
H. Chung et al. Parallel diffusion models, CVPR 2023

C. Laroche et al. Fast diffusion EM, WACV 2024



But... It Doesn’t Work!

Attempt to solve the problem with state-of-the-art diffusion prior



Main Results



A Preliminary Observation...

Noiseless setting:
y = h(0) x x

Consider the simplex constrained alternate minimization:

X():y

1
hi1 = argmin || h % xx — ik
hEAy_1 20

1
Xk+1 = argmin 72|‘hk+1 * X — yll% — log PX(X)
xeRN 20

Then hy = 6 and if y is likely, we are stuck to (4, y) !



Blurry Images Are Likely?

Airy  motion Gaussian

defocus

Dirac 0.50 1.00 1.50 2.00 2.50 3.00 3.50 4.00 4.50 5.00

A 1D family of PSFs
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Blurry Images Are Likely?
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Replicated over 100 images with two learnt diffusion priors (Karras EDM)
Note: evaluating g = ODE integration = heavy



Explaining the MAP Failure

Theorem (The global minimizer is bad)
Let H = {h(0),0 € ©} and 6 € H.

If more blurry = more likely, that is Vx, h € H.:

g(hxx) < g(x) (1)
then
(%iiap™,6) € argmin T\lh*x —ylz+g(x)
xERN heH
with
Kilenolse — argmin —— 502 Hx sz + g(x)
xERN
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Remarks

o This fact is well known for handcrafted priors (Holder) * 2
e We dreamt of a different behavior for learnt priors

o Learnt priors = Tweedie = MMSE = averaging / blur

1A. Levin et al. Understanding blind deconvolution, CVPR 2009
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Why so many people do it? Even in the recent past?
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Sufficient Recovery Conditions for Non Blind Inverse Problems

Nonblind, noiseless setting:

B 1
y=Ax and  F(x)=g()+ 5 5lAx—ylB

Assume that g(x) = — log p«(x) is C?
Theorem (A compressed sensing type observation)

The propositions below are equivalent:

= strict local minimizer of F

1. %
2. x is a second order critical point (SOCP) of g (not a saddle)
Vg(x)=0
V2g(x) = 0

and
ker(V?g(X)) N ker(A) = {0}

Points recovered by MAP&learnt priors = SOCP of — log p,!

akil,



Recovery Conditions for Blind Inverse Problems

Assume
Ve(x)=0, Vg(x)=0, A@f)x=y
Set

J(0) = %A(G)X € RM*”P

12



Recovery Conditions for Blind Inverse Problems

Assume
Ve(x) =0, Vg(x)=0, A@)x=7y
Set

J(0) = %A(G)X e RM*P

Theorem (Extension to blind inverse problems)

Set
F(x,6) = 55 IAO)% - 71 + ¢(x)
If
ker(V2g(>_()) N ker(A(0)) = {0}
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Recovery Conditions for Blind Inverse Problems

Assume
Ve(x) =0, Vg(x)=0, A@)x=7y
Set

J(0) = %A(G)X e RM*P

Theorem (Extension to blind inverse problems)

Set i
Fx,0) = 53 1A(0)x — 715+ g(x)
If

ker(V2g(x)) N ker(A(0)) = {0}

ker(J(6)) = {0}
A(f) ker(V?g(x)) Nran(J(F)) = {0}

Then (%, 0) is a strict local minimizer of F

Moreover, the result is stable to noise on y
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Second Order Critical Points of Learnt priors

SOCP: take a collection (x;), run a gradient descent on g, land at (X;)
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SOCP: take a collection (x;), run a gradient descent on g, land at (X;)
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SOCP lie near every point in space for EDM!
Erratic landscape, with a “deep valley” around an image manifold
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Posterior Minimization a Good ldea for Blind Inverse Problems?

Temporary Conclusions for Learnt Priors
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Posterior Minimization a Good ldea for Blind Inverse Problems?

Temporary Conclusions for Learnt Priors
1 - -
F(x,0) = 53 IA(0)x — 715 + &(x)

e MAP = global minimizer = blurry image

e This is because blurry image are more likely

e Posterior possesses local minimizers around SOCP
e SOCP are:

e Nearly everywhere in space
e Valuable SOCPs around natural images

Can we design algorithms converging locally?
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A simple algorithm

We consider the following algorithm:

e Set a parameter 6y corresponding to a large PSF
e xi+1 = argmin F(x, 0x) (e.g. proximal gradient descent)
xERN
® Oki1 = Ok — Tk Vo F(xki1,0k)
That is:

e Exact minimization in x

e One-step gradient descent in 6

15



A pleasant evolution (parameterization in space domain)



Diffraction limited kernels

It now works fine...



M.H. Nguyen E. Pauwels

e Posterior possesses good local minimizers

e Heuristic methods can end up there (sometimes)
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M.H. Nguyen E. Pauwels

Posterior possesses good local minimizers

e Heuristic methods can end up there (sometimes)
Still... Slow and unreliable

e Other methods like MMSE should likely be preferred
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