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Introduction



Notation & Problem

Assume that
y = A(θ̄)x̄ + b

where:

• A(θ) : RN → RM is a linear operator
• b ∈ RM : noise
• θ ∈ RP : parameterization of the operator

Our main example

A(θ)x = h(θ) ⋆ x

h(θ): kernel depending on parameter θ (e.g. pixel values, Zernike coefficients)

h is called PSF (Point Spread Function)

Blind Inverse Problem

Find (θ̂, x̂) ≈ (θ̄, x̄) from y .

• Looks much harder that classical linear inverse problems

• Yet... Dominant in applications
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Posterior Maximization

Assuming that everything is random:

• x realization of x ∼ px (learnt prior)

• θ realization of θ ∼ pθ uniform over a compact set Θ

• b realization of b ∼ N (0, σ2I )

MAP solution
.

(x̂ , θ̂) = argmax
x∈RN ,θ∈Θ

p(x , θ|y)

= argmin
x,θ∈Θ

1
2σ2 ∥A(θ)x − y∥2

2 − log px(x)

= argmin
x,θ∈Θ

1
2σ2 ∥A(θ)x − y∥2

2 + g(x)

with g(x) = − log px(x)
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A Very Popular Framework

About 5-10 papers/year since last 20 years including:

• T. Chan et al. Total Variation Blind Deconvolution, IEEE IP 1998

• A. Levin et al. Understanding blind deconvolution, CVPR 2009

• D. Perrone et al. Total variation blind deconvolution, CVPR 2014

• H. Chung et al. Parallel diffusion models, CVPR 2023

• C. Laroche et al. Fast diffusion EM, WACV 2024
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But... It Doesn’t Work!
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Attempt to solve the problem with state-of-the-art diffusion prior 5



Main Results



A Preliminary Observation...

Noiseless setting:
y = h(θ) ⋆ x

Consider the simplex constrained alternate minimization:

x0 = y

hk+1 = argmin
h∈∆N−1

1
2σ2 ∥h ⋆ xk − y∥2

2

xk+1 = argmin
x∈RN

1
2σ2 ∥hk+1 ⋆ x − y∥2

2 − log px(x)

Then h1 = δ and if y is likely, we are stuck to (δ, y) !
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Blurry Images Are Likely?
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Blurry Images Are Likely?
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Replicated over 100 images with two learnt diffusion priors (Karras EDM)
Note: evaluating g = ODE integration = heavy
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Explaining the MAP Failure

Theorem (The global minimizer is bad)

Let H = {h(θ), θ ∈ Θ} and δ ∈ H.

If more blurry = more likely, that is ∀x , h ∈ H:

g(h ⋆ x) ≤ g(x) (1)

then
(x̂denoise

MAP , δ) ∈ argmin
x∈RN ,h∈H

1
2σ2 ∥h ⋆ x − y∥2

2 + g(x)

with
x̂denoise
MAP = argmin

x∈RN

1
2σ2 ∥x − y∥2

2 + g(x)

Remarks

• This fact is well known for handcrafted priors (Hölder) 1 2

• We dreamt of a different behavior for learnt priors

• Learnt priors = Tweedie = MMSE = averaging / blur

1A. Levin et al. Understanding blind deconvolution, CVPR 2009
2D. Perrone et al. Total variation blind deconvolution, CVPR 2014 9
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Why so many people do it? Even in the recent past?
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Sufficient Recovery Conditions for Non Blind Inverse Problems

Nonblind, noiseless setting:

y = Ax̄ and F (x) = g(x) +
1

2σ2 ∥Ax − y∥2
2

Assume that g(x) = − log px(x) is C 2

Theorem (A compressed sensing type observation)

The propositions below are equivalent:

1. x̄ = strict local minimizer of F

2. x̄ is a second order critical point (SOCP) of g (not a saddle)

∇g(x̄) = 0

∇2g(x̄) ⪰ 0

and
ker(∇2g(x̄)) ∩ ker(A) = {0}

Points recovered by MAP&learnt priors = SOCP of − log px !
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Recovery Conditions for Blind Inverse Problems

Assume
∇g(x̄) = 0, ∇2g(x̄) ⪰ 0, A(θ̄)x̄ = ȳ

Set
J(θ) =

∂

∂θ
A(θ)x̄ ∈ RM×P

Theorem (Extension to blind inverse problems)

Set
F (x , θ) =

1
2σ2 ∥A(θ)x̄ − ȳ∥2

2 + g(x)

If

ker(∇2g(x̄)) ∩ ker(A(θ̄)) = {0}

ker(J(θ̄)) = {0}

A(θ̄) ker(∇2g(x̄)) ∩ ran(J(θ̄)) = {0}

Then (x̄ , θ̄) is a strict local minimizer of F

Moreover, the result is stable to noise on y
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Second Order Critical Points of Learnt priors

SOCP: take a collection (xi ), run a gradient descent on g , land at (x̄i )
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Posterior Minimization a Good Idea for Blind Inverse Problems?

Temporary Conclusions for Learnt Priors

F (x , θ) =
1

2σ2 ∥A(θ)x̄ − ȳ∥2
2 + g(x)

• MAP = global minimizer = blurry image
• This is because blurry image are more likely

• Posterior possesses local minimizers around SOCP
• SOCP are:

• Nearly everywhere in space
• Valuable SOCPs around natural images

Can we design algorithms converging locally?
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A simple algorithm

We consider the following algorithm:

• Set a parameter θ0 corresponding to a large PSF

• xk+1 = argmin
x∈RN

F (x , θk) (e.g. proximal gradient descent)

• θk+1 = θk − τk∇θF (xk+1, θk)

That is:

• Exact minimization in x

• One-step gradient descent in θ
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A pleasant evolution (parameterization in space domain) 16



Diffraction limited kernels
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ĥ

It now works fine... 17



Take Home

M.H. Nguyen E. Pauwels

• Posterior possesses good local minimizers

• Heuristic methods can end up there (sometimes)

• Still... Slow and unreliable

• Other methods like MMSE should likely be preferred
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