

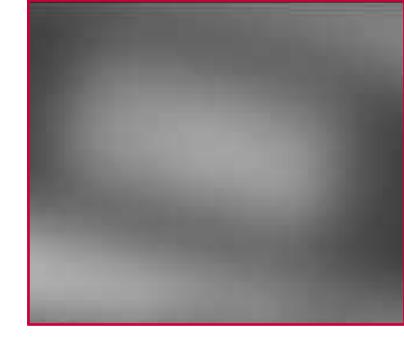
A reversible simulator

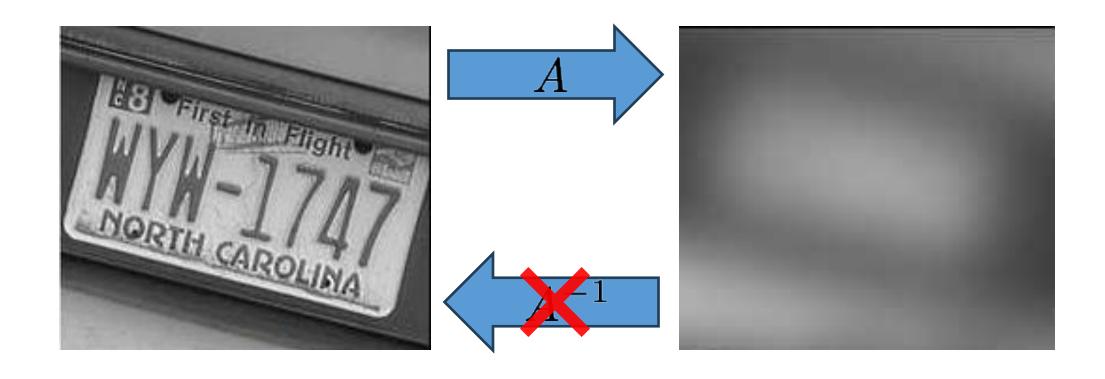
Generative modelling for forward and inverse problems

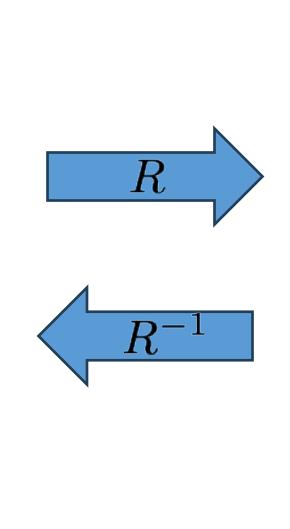
Tristan van Leeuwen

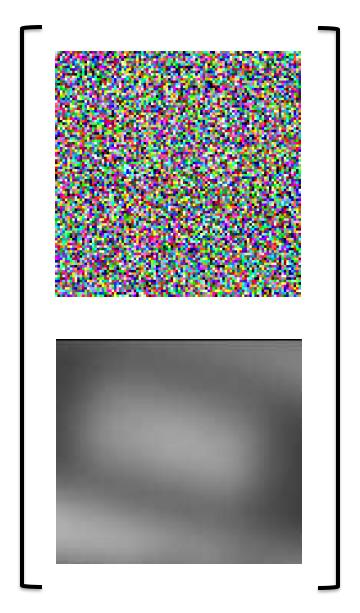
Christoph Brune, Marcello Carioni (U. Twente)
Felix Herrmann, Shiqin Zeng (Georgia Institute of Technology)

Maths4DL Conference on Inverse Problems and Deep Learning 7-9 July 2025, University of Bath







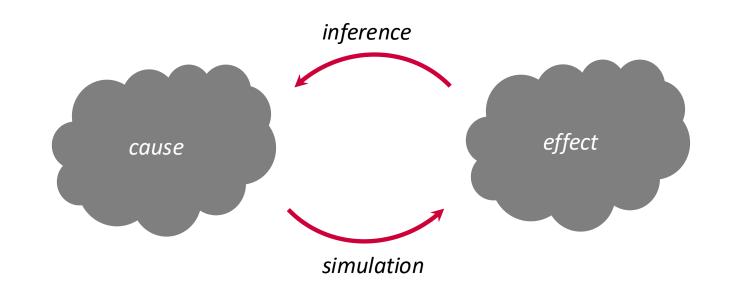


CWI

Table of contents

- 1. The inverse problem
- 2. A generative model for simulation and inference
- 3. Some numerical results
- 4. Wrap-up

The inverse problem



We are given noisy and incomplete measurements

$$\mathbf{f}^{\delta} pprox \overline{\mathbf{f}}$$

and a model

$$\overline{\mathbf{f}} = K\overline{\mathbf{u}}$$

The goal is to obtain an estimate ${f u}^\delta$ of $\,\overline{f u}$

Formulate a *likelihood* to describe the measurements

$$\pi_{
m like}(\mathbf{f}|\mathbf{u})$$

a *prior* to capture assumptions on $\overline{\mathbf{u}}$

$$\pi_{\mathrm{prior}}(\mathbf{u})$$

and use these to construct the *posterior*

$$\pi_{\text{post}}(\mathbf{u}|\mathbf{f}) = c \cdot \pi_{\text{like}}(\mathbf{f}|\mathbf{u})\pi_{\text{prior}}(\mathbf{u})$$

One often computes a MAP estimate

$$\mathbf{u}_{\mathrm{MAP}} = \arg\max_{\mathbf{u}} \, \pi_{\mathrm{post}}(\mathbf{u}|\mathbf{f})$$

and sometimes characterizes local uncertainty by inspecting the

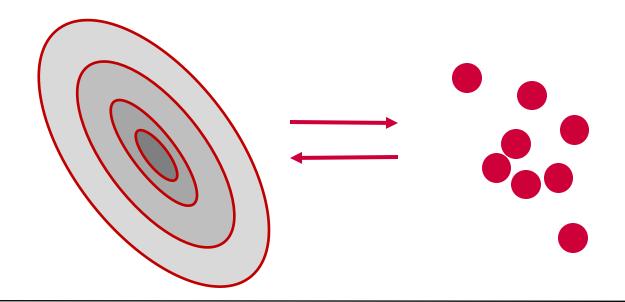
"Fisher information matrix"

$$-\partial_{\mathbf{u}_i}\partial_{\mathbf{u}_i}\log\pi_{\mathrm{post}}(\mathbf{u}|\mathbf{f})$$

The posterior is the answer to the inverse problem, capturing all prior assumptions and allowing us to give a probabilistic answer.

Both modelling and sampling are challenge tasks and generative models have shown to be a promising tool for both

A generative model for simulation and inference



The basic idea

- If we learn the joint probability $\pi(\mathbf{u},\mathbf{f})$, we can use it for simulation and inference by conditioning either variable
- By taking system-specific parameters in to account we can make the approach more generic
- Once trained, simulation and inference have similar computational cost, and the model can be used to give probabilistic answers

Represent the sought distribution as

$$\pi(\mathbf{u}, \mathbf{f}) = \pi_0(T(\mathbf{u}, \mathbf{f}))|\nabla T(\mathbf{u}, \mathbf{f})|$$

where T is obtained by solving

$$\min_{T} \mathbb{E}_{(\mathbf{u},\mathbf{f})} \frac{1}{2} ||T(\mathbf{u},\mathbf{f})||_{2}^{2} - \log |\nabla T(\mathbf{u},\mathbf{f})|$$

which requires access to paired samples $\{(\mathbf{u}_i,\mathbf{f}_i)\}_{i=1}^N$

It suffices to consider triangular maps

$$T(\mathbf{u}, \mathbf{f}) = (T_X(\mathbf{u}), T_Y(\mathbf{u}, \mathbf{f}))$$

or

$$T(\mathbf{u}, \mathbf{f}) = (T_X(\mathbf{u}, \mathbf{f}), T_Y(\mathbf{f}))$$

Having trained a lower and upper triangular map, we can approximate the likelihood and prior as

$$\pi_{\text{like}}(\mathbf{f}|\mathbf{u}) = \pi_0(T_{\text{like}}(\mathbf{f};\mathbf{u}))|\nabla T_{\text{like}}(\mathbf{f};\mathbf{u})|$$

$$\pi_{\text{post}}(\mathbf{u}|\mathbf{f}) = \pi_0(T_{\text{post}}(\mathbf{u};\mathbf{f}))|\nabla T_{\text{post}}(\mathbf{u};\mathbf{f})|$$

and sample from them as

$$\mathbf{f} = T_{\text{like}}^{-1}(\mathbf{y}; \mathbf{u}), \quad \mathbf{y} \sim \pi_0$$

 $\mathbf{u} = T_{\text{post}}^{-1}(\mathbf{x}; \mathbf{f}), \quad \mathbf{x} \sim \pi_0$

We can combine these two maps into an invertible mapping

$$(\mathbf{x}, \mathbf{f}) = S(\mathbf{u}, \mathbf{y})$$

with

$$S(\mathbf{u}, \mathbf{y}) = (T_{\text{post}}(\mathbf{u}; T_{\text{like}}^{-1}(\mathbf{y}; \mathbf{u})), T_{\text{like}}^{-1}(\mathbf{y}; \mathbf{u}))$$

$$S^{-1}(\mathbf{x}, \mathbf{f}) = \left(T_{\text{post}}^{-1}(\mathbf{x}; \mathbf{f}), T_{\text{like}}(\mathbf{f}; T_{\text{post}}^{-1}(\mathbf{x}; \mathbf{f}))\right)$$

A reversible simulator

- This mapping constitutes a data-driven reversible simulator, which can be used for stochastic simulation and inference
- We can include additional parameters (e.g., noise level, sampling)

$$(\mathbf{x}, \mathbf{f}) = S(\mathbf{u}, \mathbf{y}; \mathbf{s})$$

Knowledge about the physics can be included in the architecture

$$T_{\text{like}}(\mathbf{f}; \mathbf{u}) = \widetilde{T}_{\text{like}}(\mathbf{f}; K\mathbf{u})$$

$$T_{\text{post}}(\mathbf{u}; \mathbf{f}) = \widetilde{T}_{\text{post}}(\mathbf{u}; K^{\top} \mathbf{f})$$

A reversible simulator

This mapping achieves

$$S^{\#}\pi_X\pi_F = \pi_U\pi_Y$$

so it is tempting to train it directly by solving e.g.

$$\min_{S} \mathrm{KL}(S^{\#}\pi_{X}\pi_{F}, \pi_{U}\pi_{Y})$$

but this has trivial 'block diagonal' solutions

$$S(\mathbf{u}, \mathbf{y}) = (S_X(\mathbf{u}), S_F(\mathbf{y}))$$

Some examples

Consider a linear inverse problem with zero-mean Gaussian prior and Likelihood

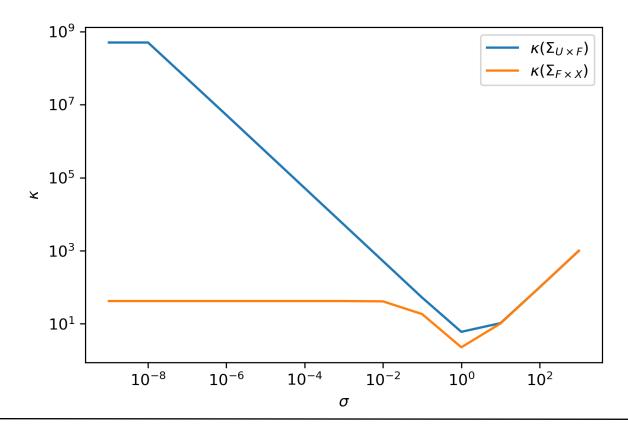
$$\Sigma_{UF} = egin{pmatrix} \Sigma_u & \Sigma_u K^{ op} \ K\Sigma_u & K\Sigma_u K^{ op} + \Sigma_f \end{pmatrix}$$

The corresponding reversible simulator is represented by

$$S = \begin{pmatrix} \Sigma_{\text{post}}^{1/2} \Sigma_u^{-1} & -\Sigma_{\text{post}}^{1/2} K^{\top} \Sigma_f^{-1/2} \\ K & \Sigma_f^{1/2} \end{pmatrix},$$

Toy example

Conditioning of the reversible simulator with $\Sigma_f = \sigma^2 I$



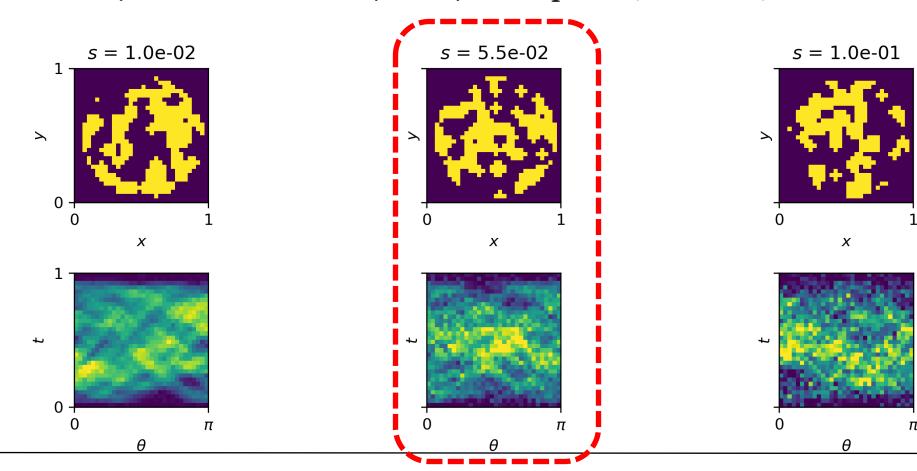
Computed tomography

- ullet Goal is to infer an image ${f u}$ from a sinogram ${f f}$
- The measurements include Poisson noise
- Use affine normalizing flows to represent $\pi(\mathbf{u},\mathbf{f};\mathbf{s})$ where \mathbf{s} models either noise level or angles

CWI

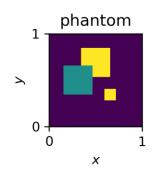
Computed tomography I

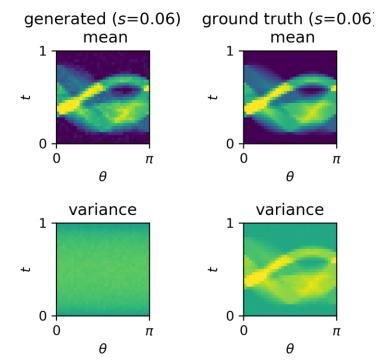
$$T_{\text{like}}(\mathbf{f}; \mathbf{u}, s) = s^{-1} \widetilde{T}_{\text{like}}(\mathbf{f}; \mathbf{u}) \quad T_{\text{post}}(\mathbf{u}; \mathbf{f}, s) = s^{-1} \widetilde{T}_{\text{post}}(\mathbf{u}; \mathbf{f})$$

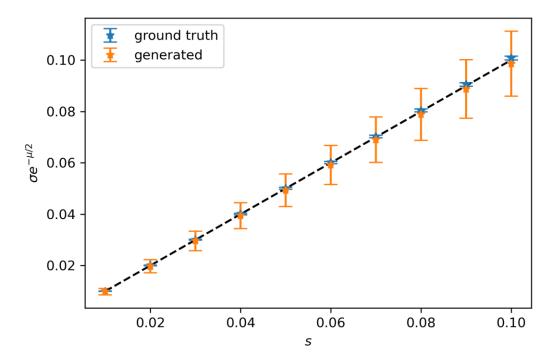


Computed tomography I

Simulation

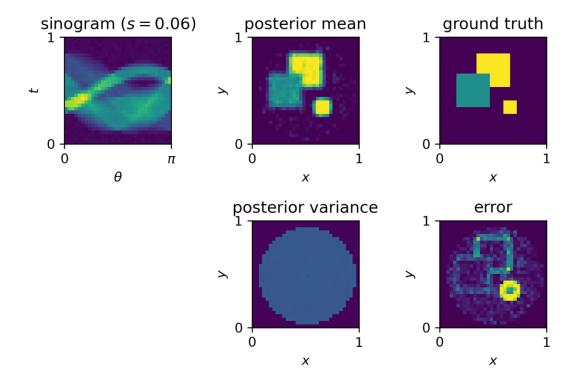


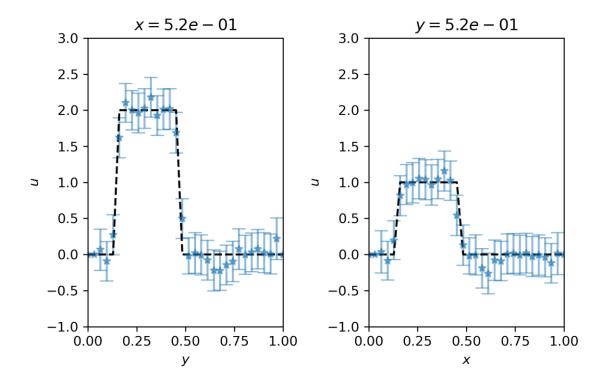




Computed tomography I

Inference



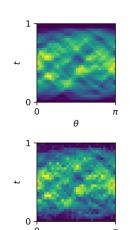


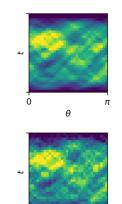
Computed tomography II

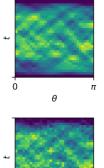
Include forward operator into architecture

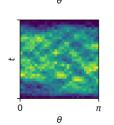
$$T_{\mathrm{like}}(\mathbf{f}; \mathbf{u}, \mathbf{s}) = \widetilde{T}_{\mathrm{like}}(\mathbf{f}; K(\mathbf{s})\mathbf{u})$$

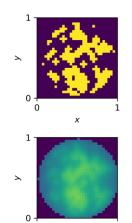
$$T_{\text{like}}(\mathbf{f}; \mathbf{u}, \mathbf{s}) = \widetilde{T}_{\text{like}}(\mathbf{f}; K(\mathbf{s})\mathbf{u})$$
 $T_{\text{post}}(\mathbf{u}; \mathbf{f}, \mathbf{s}) = s^{-1}\widetilde{T}_{\text{post}}(\mathbf{u}; K(\mathbf{s})^{\top}\mathbf{f})$

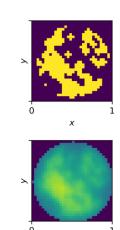


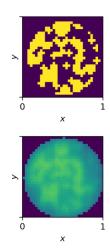






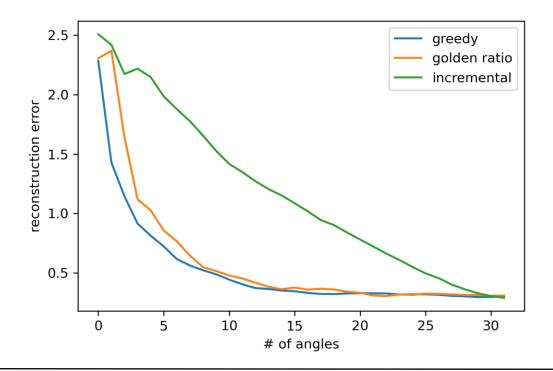






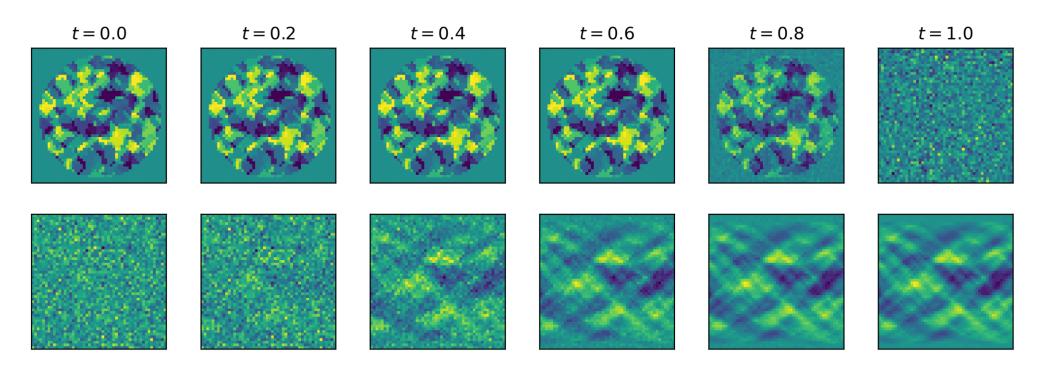
Computed tomography II

Sequentially select angles $\mathbf{s} = [s_1, \dots, s_m]$ to minimize reconstruction error



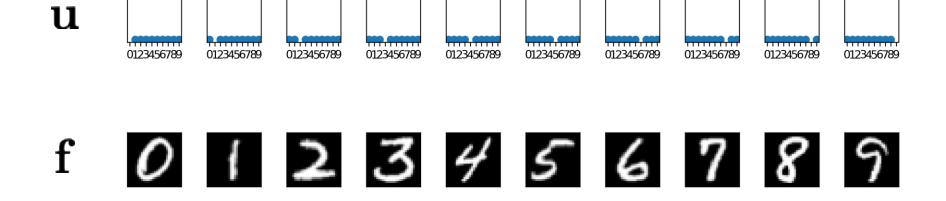
Computed tomography III

We can also use flow matching as generative model



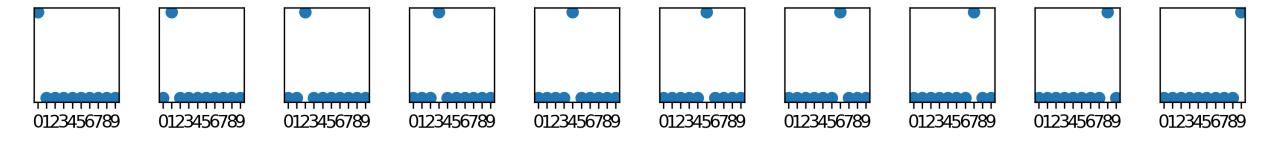
Classification

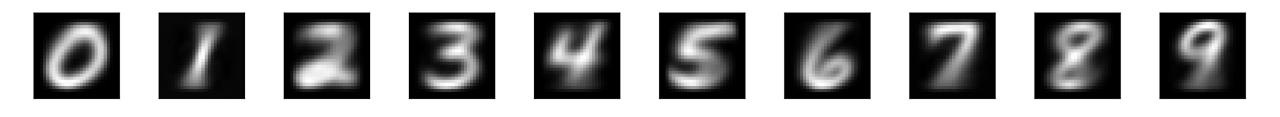
Can also be used for generation / classification with the same model



Classification

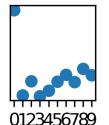
Generation (conditional mean)

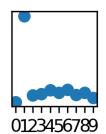


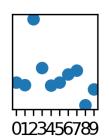


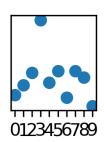
Classification

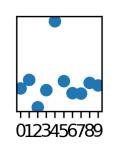
Classification (conditional mean)

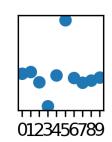


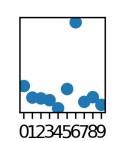


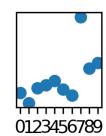


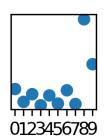


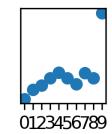












Wrap-up

CWI Wrap-up

- We can combine generative models for simulation and inference into a single generative model that samples from the underlying conditional distributions
- First results are promising, also for experimental design
- The approach still has many challenges, including training S directly based on samples from the joint distribution
- (Don't underestimate the power of linear models)

(An incomplete lost of) references

Background, review and concepts

Stuart, Andrew M. "Inverse problems: a Bayesian perspective." Acta numerica 19 (2010): 451-559.

Ardizzone, Lynton, et al. "Analyzing Inverse Problems with Invertible Neural Networks." International Conference on Learning Representations. 2018.

Arridge, S., Maass, P., Öktem, O., & Schönlieb, C. B. (2019). Solving inverse problems using data-driven models. Acta Numerica, 28(2019), 1–174.

Lavin, Alexander, et al. "Simulation intelligence: Towards a new generation of scientific methods." arXiv preprint arXiv:2112.03235 (2021).

Ghattas, Omar, and Karen Willcox. "Learning physics-based models from data: perspectives from inverse problems and model reduction." Acta Numerica 30 (2021): 445-554.

Kim, Ki-Tae, et al. "hIPPYlib-MUQ: A Bayesian inference software framework for...." ACM Transactions on Mathematical Software (2023).

Orozco, R., Siahkoohi, A., Rizzuti, G., van Leeuwen, T., & Herrmann, F. (2023). Adjoint operators enable fast and amortized machine learning based Bayesian uncertainty quantification. 56.

Radev, Stefan T., et al. "JANA: Jointly amortized neural approximation of complex Bayesian models." Uncertainty in Artificial Intelligence. PMLR, 2023.

Radev, Stefan T., et al. "BayesFlow: Amortized Bayesian workflows with neural networks." arXiv preprint arXiv:2306.16015 (2023).

Marzouk, Youssef, et al. "Sampling via measure transport: An introduction." Handbook of uncertainty quantification. Springer, Cham, 2017. 785-825.

Adler, Jonas, and Ozan Öktem. "Deep bayesian inversion." arXiv preprint arXiv:1811.05910 1.2 (2018): 7.

Wang, Amy Xiang. "On Conditional Sampling with Joint Flow Matching." ICML 2024 Workshop on Structured Probabilistic Inference & Generative Modeling. 1905.