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The inverse problem

inference

7~ N\

N

simulation




Inverse Problems & Bayesian Statistics

We are given noisy and incomplete measurements
fO~f

and a model
f = Ku

The goal is to obtain an estimate ulof U




Inverse Problems & Bayesian Statistics

Formulate a likelihood to describe the measurements
Tike (Fl1)

a prior to capture assumptions onu
ﬂ.pI'iDI‘(u)

and use these to construct the posterior

Wpﬂst(u‘f) = C- Wlike(f‘u)ﬂ-priﬂr(u)




Inverse Problems & Bayesian Statistics

One often computes a MAP estimate
UMAP = argmax Tpost (U|)
and sometimes characterizes local uncertainty by inspecting the

“Fisher information matrix”

_ 8111_ 8uj lOg ﬂ-pﬂst (U.‘ f)




Inverse Problems & Bayesian Statistics

The posterior is the answer to the inverse problem, capturing all prior

assumptions and allowing us to give a probabilistic answer.

Both modelling and sampling are challenge tasks and generative

models have shown to be a promising tool for both
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A generative model for
simulation and inference




The basic idea

If we learn the joint probability ’?1'(11, f), we can use it for
simulation and inference by conditioning either variable

By taking system-specific parameters in to account we can make
the approach more generic

Once trained, simulation and inference have similar computational
cost, and the model can be used to give probabilistic answers
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Implementation using NFs

Represent the sought distribution as

where " is obtained by so

min
T

4, 1
(u,f) 2

w(u,f) = mo(T(u, f))|VT (u,f)]

ving

T'(u,f)|3 — log |[VT(u,f)]

N

which requires access to paired samples {(ui,, fi;) i—1

See e.g., Marzouk, 2017
GRS
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Implementation using NFs

It suffices to consider triangular maps

T(u,f) = (Tx(u), Ty (u,f))

or

T(U, f) — (TX (U, f): Ty (f))

See e.g., Marzouk, 2017
GRS




Implementation using NFs

Having trained a lower and upper triangular map, we can approximate
the likelihood and prior as

’ﬂ-like(ﬂu) — ﬂ-[}(ﬂike(f; u))‘VTIike (f: U)‘
Toost (U[F) = 7o (Tpost (W; )|V Thost (u; ),

and sample from them as

f = 111.;6(.')’: u) y ~ Ty
u="7-11

post (X f) X~ TQ

See e.g, Radev et. al. 2022, 2023
GRS
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Implementation using NFs

We can combine these two maps into an invertible mapping

(x,f) = 5(u,y)

with
S(U, Y) ( PﬂSt(u Thke(y! U)) Thke(YJ U))

S_I(X: f) — (Tpost(x f) Tllke(f Tpost(x;f)))
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A reversible simulator

* This mapping constitutes a data-driven reversible simulator, which
can be used for stochastic simulation and inference

 We can include additional parameters (e.g., noise level, sampling)
(x,f) = 5(u,y;s)
 Knowledge about the physics can be included in the architecture
Tiike(f; 1) = Thire(f; Ku)
Tpnst ('Ll; f) — Tpnst ('l_l; KTf)

See e.g., Adler & Oktem 2018, Fluri et. al. 2021, Orozco et. al. 2022
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A reversible simulator

This mapping achieves

S#’?Tx’i’fp — MyTy

so it is tempting to train it directly by solving e.g.

II]SiIlKL(S#’?Tx’?TF}TTU’?Ty)

but this has trivial ‘block diagonal’ solutions

S(u,y) = (Sx(u),Sr(y))
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Some examples




Toy example

Consider a linear inverse problem with zero-mean Gaussian prior and
Likelihood

> D Y KT
UF = \KZ, KXK' +%;
The corresponding reversible simulator is represented by

511/2 31 _y1/2 KTE;UQ

S _ post post

1/2 )
K 2
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Toy example

Conditioning of the reversible simulator with Ef = 0‘2I

109 _
— K(ZuxF)
K(ZF x x)
107 |
105 n
X
103 n
101 m
10°8 10-° 10~4 1072 10° 10°
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Computed tomography

 Goalis to infer an image U from a sinogramf
e The measurements include Poisson noise

* Use affine normalizing flows to represent 71'(11,, f; S) where S
models either noise level or angles
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Computed tomography |

:Z-Ilike(fﬁ u, S) — S_lj:like(f; 11) Tpnst(u; f:f S) — S_ITpnst(u; f)

s =1.0e-02

s =1.0e-01

----------/
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Computed tomography |

Simulation

generated (s=0.06) ground truth (s=0.06
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Inference

s{nogram (s=0.006)

Computed tomography |
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Computed tomography Il

Include forward operator into architecture

Tlike(f; u, 5) — ﬁike (f:r K(S)u) T]}DE‘IJ (ll; f: 5) — S_prﬂst(u; K(S)Tf)
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Computed tomography Il

Sequentially select angles s = [s1, ..., S;,|to minimize
reconstruction error
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Computed tomography Il

We can also use flow matching as generative model

See e.g., Wang 2024
eeeeGeTGTGTGTETGTEGLEL
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Classification

Can also be used for generation / classification with the same model

| o b b b b o bmd b b
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Classification

Generation (conditional mean)
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Classification

Classification (conditional mean)
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Wrap-up




Wrap-up

We can combine generative models for simulation and inference
into a single generative model that samples from the underlying
conditional distributions

First results are promising, also for experimental design

The approach still has many challenges, including training S
directly based on samples from the joint distribution

(Don’t underestimate the power of linear models)
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